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ABSTRACT
Offering students immediate, formative feedback when they
are programming can increase students’ learning outcomes
and self-efficacy. However, visual and interactive programs
include dynamic user input and visual outputs that change
over time, making it difficult to automatically assess stu-
dents’ code with traditional functional tests to offer this
feedback. In this work, we introduce Execution Trace Based
Feature Engineering (ETF), a feature engineering approach
that extracts sequential patterns from execution traces, which
capture the runtime behavior of students’ code. We evalu-
ated ETF on 162 students’ code snapshots from a Pong game
assignment in an introductory programming course, on a
challenging task to predict students’ success on fine-grained
rubrics. We found that ETF achieves an average F1 score
of 0.93 over 10 grading rubrics, which is 0.1–0.2 higher than
a high-performing syntax-based code classification approach
from prior work. These results show that ETF has strong
potential to be used for code classification, to enable forma-
tive feedback for students’ visual, interactive programs.
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1. INTRODUCTION
Real-time, formative feedback promotes students’ learning
gains and self-efficacy [7, 3, 12, 18]. To provide such forma-
tive feedback in real-time, CS instructors commonly write
test cases, allowing students to run their code against these
test cases when programming [9, 5, 6, 4]. However, visual,
interactive programming projects, such as creating apps and
games [16], include dynamic user interactions, and visual
outputs that change over time, making it challenging to use
test cases to assess these programs [14, 13, 20].

In contrast to test case-based approaches, data-driven meth-

Figure 1: A horizontal n(2)-Gram (in yellow) and a
vertical n(2)-Gram (in blue).
ods allow instructors to offer formative feedback by grad-
ing a smaller set of programs instead of writing test cases
[11, 21, 10, 22]. These methods start with transforming
code into input vectors using feature engineering, typi-
cally by extracting syntax elements from an abstract syntax
tree (AST), where nodes and their children correspond to
specific code elements (e.g., if statements). However, when
applying these syntax-based feature extraction techniques to
classify programs, prior work showed mixed results, which
are often not high enough to ensure the quality of student
feedback [11, 1, 2]. Some prior work has used execution
traces to classify students’ sorting programs based on their
specific strategies, and has shown that execution-trace-based
classification achieved higher accuracies than a syntax-based
classification approach [8]. However, no prior work has con-
ducted feature extraction on the execution trace of visual,
interactive programs, which include dynamic user interac-
tions and various changing outputs. In this work, we ex-
tract features from execution traces that capture the runtime
behavior of visual, interactive programs. We designed an ex-
ecution trace-based feature engineering approach (ETF) to
transform students’ source code into feature vectors, for clas-
sification algorithms to build models based on rubric-based
labels (e.g., the presence of a key-triggered movement). We
evaluated ETF by classifying 162 students in-progress and
submitted code snapshots. We found it to achieve high
prediction performance with an average of 0.93 F1 score
over 10 grading rubric items, which is 0.1–0.2 higher than a
high-performing syntax-based code classification approach.
Our work has the following contributions: 1) We designed
and implemented a novel, execution trace-based feature en-
gineering (ETF) approach to extract temporal patterns in
students’ visual, interactive programs; 2) We evaluated the
ETF approach on students’ code snapshots for a widely-
used, representative visual, interactive program assignment.

2. RELATED WORK
Syntax-based approaches extract patterns inside a code
AST, use the presence or absence of a feature, or the count
of the feature to generate input vectors. As an example,



Figure 2: Step 1: Generating Execution Traces.

we explain a recently-applied AST n-Gram feature extrac-
tion approach [17, 2] by making an analogy to Natural Lan-
guage Processing (NLP): In NLP, an n-Gram with n = 1
is a 1 -Gram feature taken from each word; and an n-Gram
feature takes a continuous sequence of n words to extract
relationship between words (e.g., orders); in an AST, 1 -
Gram features represent each node in students’ code. And
to extract structural relationships, Akram et al. [2] designed
the use of n-Grams to represent n-length sequences of code,
where a vertical n-Gram is created by a depth-first search
of leaves; a horizontal n-Gram is created by a breadth-
first search of all direct children of each AST nodes (e.g.,
in Figure 1) [2]. 1 -Gram and n-Gram-based AST feature
extraction approaches have both been applied for student
code classification tasks. Compared to 1 -Gram feature ex-
tractions, prior work has shown that n-Grams provide more
predictive features for code analysis. For example, Akram
et al. used n-Grams with n ranging from 1 to 4 to extract
features, and used a Gaussian Process model to infer scores
on 642 students’ code pieces, in a block-based programming
environment. This achieved an R-square of 0.94, higher than
the 0.88 achieved by the baseline 1 -Gram approach [2, 1].

On the other hand, recent work by Paaßen et al. used
execution-trace-based distance measures to classify pro-
grams into different strategies (e.g., bubble sort v.s. Inser-
tion sort), and found that execution- race-based classifica-
tion achieving 90% accuracy, higher than the 80% accuracy
achieved by syntax-based approaches [8]. This shows the
potential of using execution traces to classify students’ pro-
gramming code.

3. THE ETF APPROACH
ETF starts from collecting a set of students’ programming
code, along with a class label for each piece of code, (i.e., pos-
itive or negative). ETF is designed for programs that have
the following properties: 1) respond to dynamic user in-
puts (e.g., mouse, keyboard). 2) has object-specific pro-
gram states, corresponding to visual output on the screen.
3) Program behaviors can be a function of time; and can
also change over time.

An Example Assignment. As an example, consider the
Pong assignment, which consists of a paddle sprite and a
ball sprite. The ball moves around the stage [19], and a
player can use the keyboard to control the up and down
movement of the paddle to catch the running ball. If the
paddle catches the ball, the player score increases; but if
the paddle misses the ball and the ball hits the back wall,
the game ends. ETF conducts feature engineering on such
visual, interactive programs in four steps, described below.

Figure 3: Step 2&3: summarizing traces & generat-
ing features.

3.1 Step 1: Generating Execution Traces
Visual, interactive programs include program states that
can be represented as properties that change over time.
For example, in Snap!, these properties can include: 1)
Time: how much milliseconds has passed from the start
of program execution; 2) inputs: including KeysDown (which
key is pressing); MouseDown (if mouse pressing); MouseX and
MouseY (x, y positions of mouse) 3) global variables: the
names (Var.Name and values Var.Value) of global variables;
4) sprite-specific properties: properties that are related to
specific sprites, such as (x, y) (x, y coordinates); dir (di-
rections); TouchSprite (which sprites the current sprite is
touching); TouchEdge (which stage edge the sprite is touch-
ing); size (sprite size); OffStage (whether the sprite is
moved out of the stage); the names (Var.Name) and values
Var.Value local variables. The dumped execution trace ta-
bles use sprite names to label sprite-specific properties (e.g.,
to distinguish ball.x from paddle.x1).

Systems such as Snap! and Scratchmake use of step func-
tions to update the above properties based on the current
properties and the current user inputs [14, 19]. We instru-
mented the step function in Snap! with a trace logging tool,
so that with each Step, it adds a row in an execution trace
table with the properties listed above, and dumps the trace
table at the end of the execution. Figure 2 gives an example
of a part of the execution trace table, in which one row logs
one discrete Step created by the step function, with each
entry maps to a property (i.e., a concrete program state).

3.2 Step 2: Summarizing Traces
ETF algorithm scans through the execution trace table in
a sliding window of multiple steps (default as 2), apply a
Trace Abstraction Function (TAF). The TAF looks for
properties based on candidate properties, and only re-
turns properties that were found in the sliding window as a
summarized property set . A candidate property can be an
abstract property , describing the changes between steps in
the execution trace, such as movement and variable change;
A candidate property can also be an original trace prop-
erty which were already recorded in the execution trace.
In each sliding window, the TAF function returns a sum-
marized property set that includes all found properties, for
example, in the step window 120-121 of Figure 3, all candi-
date properties were found because there is a change in po-

1ETF uses these properties to summarize trace and gener-
ate features (Section 3.3). To allow comparison across stu-
dents, sprites need to have consistent labels across student
programs.



sition (Move), a change in direction (Turn), and a non-empty
TouchSprite column in Step 121. This creates a summarized
property set {Move, Turn, TouchSprite}, shown in Row 2 of
the summary trace (Figure 3). In addition, TAF’s candidate
properties also include possible types of parameters, which
describe detailed information of the property.

For Pong, ETF used 9 types of candidate properties. Ex-
cept 2 program state properties: (KeysDown and ChangeVar),
the rest 7 are sprite-specific properties and are labeled with
the sprite names (e.g., Paddle.Move). Among the 9 can-
didate properties, 4 were original trace properties, directly
returned when the corresponding property in the last step of
the sliding window is non-empty: KeysDown, TouchSprite,
TouchEdge, and OffStage, using the same parameters with
the corresponding execution trace entry at the last step of
the sliding window, explained in Section 3.1. Others are 5
abstract properties, that only checks if a property changes
between the first and last step of the sliding window (and
if has middle, omit those middle ones). 1) Move〈←,→, ↑, ↓〉.
Returned when a sprite position changes. Its parameters are
the direction toward which the sprite moves. 2) Turn. Re-
turned when a sprite changes direction. 3) ChangeSize〈+,
-〉. Returned when the Sprite changes its size to bigger
(+) or smaller (-). 4) ChangeVar〈variable names〈+, -〉〉.
Returned when a global variable’s value has been changed
to bigger (+) or smaller (-). 5) ChangeLocalVar〈variable
names 〈+, -〉〉. Returned when a local variable’s value has
been changed to bigger (+) or smaller (-).

3.3 Step 3: Generating n-Gram-based Features
ETF next transforms summary trace created by Step 2 into
a set of features using n-Gram-based approach, where an n-
Gram takes a contiguous sequence of n items in data (Fig-
ure 3). ETF extracts features of 4 types: 1) 1 -Grams,
extracting simultaneous behaviors, taken from each row
of the summary trace. 2) 2 -Grams, connecting adjacent 1 -
Grams sequentially; 3) Power Sets. We extract n-Grams
of not only the full property set in each row of the sum-
mary trace, but also of subsets of the property set, such
as the 2-set of just Move and Turn from t 1 -Gram {Move,
Turn}. When constructing power sets for 2 -Grams, we ap-
ply the power set on the types of properties that are possible
in this 2 -Gram. 4) For all the n-Grams extracted above,
we keep both non-parameterized n-Grams, where we do
not record the parameters, as well as parameterized n-
Grams, where each property would include its parameters
when they were logged in the summary trace. Next, ETF
collects distinct features from all students’ feature sets as the
full feature set, which consists of distinct features from all
students.

3.4 Step 4: Filtering Features
Merging duplicate features and removing rare fea-
tures. Based on the full feature set generated from Step
3, if features have the exact same distribution among pro-
grams, the ETF algorithm then merges these features as one
feature; and it calculates the support of each feature based
on the proportion of student programs that include this fea-
ture, and remove features that have support lower than a
certain threshold, determined by a hyperparameter tuning
process, described in Section 4.2.

Generating x vectors. After generating, merging dupli-
cates, and removing rare features, we use the resulting fea-
ture set as the independent variables, and for each student
program, we use 1 as representing the presence of a feature
in the student program (i.e. the n-Gram appeared at least
once in their abstracted execution trace), 0 as the absence
of the feature, and generate 0-1 digitized x vector for each
student’s code snapshot, which is used as vector input for a
classification model.

4. EVALUATION
We investigate our research question: How accurately
does ETF perform rubric-based code classification of
students in-progress and submitted code, and how
does this compare to syntax-based approaches?. We
first a) compare performance of ETF features and syntax-
based features across models; and next b) compare ETF
features and syntax-based features across rubrics on a
fixed model. Our analysis of a) and b) follows the same
procedure, where we started by generating ETF and syntax-
based features separately ( Section 4.1). We next performed
the same feature filtering, training and evaluation procedure
on the features we created (Section 4.2).

Dataset. We evaluated ETF on 42 students’ 162 code snap-
shots for a Pong game assignment, sampling student code
snapshots at 10 minutes (42), 20 minutes (40) and 30 min-
utes (38) of work, as well as their final submissions (42), on
10 target evaluation items: key up/down, upper/lower bound,
space start, edge bounce, paddle bounce, paddle score, re-
set score, reset ball. A detailed description and the preva-
lence of the data can be found in our prior work [19].

4.1 Generating Features
Generating ETF features. We used the procedure de-
scribed in the Step 1 – 3 (Section 3.1–3.3) of the ETF ap-
proach to generate ETF features. We first automatically
run the program based on inputs. To ensure coverage, we
used the same inputs (up/down arrow key, follow/evade ball)
as our in prior work [19], defined using SnapCheck. For
each program snapshot, we re-executed the program 5 times.
Each run of student programs generated one execution table.

Generating AST n-Gram and 1 -Gram Features. We
first compare ETF it with a representative, syntax-based
feature extraction approach that has performed well in prior
evaluations by using the AST n-Gram feature extraction ap-
proach [2]. Similar to Akram et al.’s work, we extracted all
n-Grams from all ASTs, using n = 1 to 5 for vertical n-
Grams, and n = 1 to 4 for horizontal n-Grams (explained
in Section 2). Similar to many AST feature extraction ap-
proaches [10, 11, 22], we used a single label for all literals
(literal).

4.2 Feature Filtering & Evaluation
We applied the same feature filtering and evaluation to the
ETF, AST n-Gram, and AST 1 -Gram features:

Feature Filtering. For fairness of comparison, after col-
lecting features, we used the Step 4 from the ETF algo-
rithm to filter features for all ETF, AST n-Gram, and AST
1 -Gram features. For each type of the three features, we



Table 1: F1 scores of AST 1-Grams, AST n-Grams,
and ETF Features, over different models.

AST
1-Grams

AST
n-Grams

ETF
Features

Logistic Regression 0.771 0.779 0.932
AdaBoost 0.78 0.78 0.922

Random Forest 0.763 0.773 0.926
MLP 0.764 0.771 0.908

Gaussian Process 0.739 0.728 0.923
SVM 0.759 0.771 0.93

started by using ETF to automatically merge duplicate fea-
tures (Step 4.a), and remove features that have support
smaller than a certain threshold in the training set (Step
4.b). The threshold is set as a hyperparameter (tuned as
described below).

Classification Models. To ensure that our comparison
was not model-specific, we used 6 different models on the
feature set: Logistic Regression, AdaBoost, Random Forest,
Multi-layer perceptron (MLP), Gaussian Process, and SVM.
Among them, the Gaussian Process model with an RBF ker-
nel was also employed by Akram et al., and has shown to be
the best performing model in the rubric-based performance
inference task that they have applied [2].

Training & Evaluation. We employed 10-fold cross-validation
to evaluate how accurately these different features predict
the rubric-based performance. Within each round of cross-
validation, we used another 2-fold cross-validation to tune
the hyperparameters (i.e. nested cross-validation [15]). For
all models, we included a minimum feature support thresh-
old hyperparameter, T , below which we exclude the feature
(e.g. ETF feature or AST n-Gram feature) from the final
feature set, with the minimum support threshold as a hyper-
parameter, tuned based on 5 values: {0, 5%, 10%, 15%, 20%}.
Additionally, since different feature extraction approaches
may perform best with different values of model-specific
hyperparameters, we also tuned hyperparameters for each
classification models, based on the following values: Lo-
gistic regression: with penalty in {L1, L2}; Random For-
est : with n estimaters (i.e., number of trees in the forest)
in {100, 200, 300, 400, 500}; AdaBoost : with learning rate in
{0.01, 0.1, 1}; MLP : with learning rate in {0.001, 0.01, 0.1};
’ SVM : We used a linear kernel, with the regularization pa-
rameter (C) in {0.01, 0.1, 1, 10, 100}; Gaussian Process mod-
els optimize kernel hyperparameters during model fitting,
we therefore did not tune hyperparameters for the Gaus-
sian Process classifier. The values of the minimum feature
support threshold and the model-specific hyperparameters
were determined by their F1 scores in the nested 2-fold cross-
validation, based on a grid search on 5*#(model-specific hy-
perparameter values) possible types of hyperparameter com-
binations, during each round of the 10-fold cross-validation.
Since many of our target labels are imbalanced, the accu-
racy score offers less information on how well our model
performs in predicting target labels. We therefore use F1

scores to tune hyperparameters. To ensure that data from a
given student was not contained in both training and testing
sets, all cross-validation splits were done on the 42 students
(instead of on the 162 snapshots).

4.2.1 Results
Comparison Across Models. Using each of the 6 mod-
els described above, we predict students’ rubric-based per-

Figure 4: The F1 score (F1), Precision (P), Recall
(R) and Accuracy (A) of ETF, n-Gram, and 1 -Gram
features on each rubric, using an SVM model. x-axis
starts from F1 = 0.5.

formance, calculated its F1 score among the 162 students’
data using 10-fold cross validation, creating one F1 score
for each rubric. We next averaged F1 scores for each clas-
sifier across all rubrics, shown in Table 1. We saw that the
AST n-Gram approach performed similar to the 1 -Gram
approach (5 in 6 cases), and that ETF features generated
F1 scores that were consistently 0.14 to 0.2 higher than the
AST n-Gram features, showing that all classifiers benefited
from the execution-trace-based information extracted by the
ETF features, with overall F1 scores between 0.9 and 0.93.
This result shows potential for us to make use of ETF fea-
tures to correctly analyze students’ current progress, which
should enable automated, formative feedback in future work,
to help a student who is stuck in the middle of programming.

Performance Across Rubrics. We next investigate the
performance of the three feature extraction approaches across
rubrics. Since all model show similar trends, we select SVM
and present performance on all rubrics in Figure 4. We found
1) The naive AST 1 -Gram features had relatively lower F1

scores on rubrics that had less prevalence in data (e.g., re-
set score, reset ball); 2) Comparing to AST 1 -Gram, the
AST n-Gram features produced higher F1 scores for pad-
dle score, reset score, reset ball, showing that AST n-Gram
extracted more useful feature for these three rubric items.
However, the ETF features performed relatively well across
all rubrics, with its F1 scores ranging from 0.9 to 0.99, show-
ing that ETF features have strong potential to enable for-
mative feedback on a variety of fine-grained, specific rubrics.

In conclusion, we presented a novel, effective approach that
extracted useful features from execution traces (ETF), lead-
ing to high predictive accuracy. Our results show strong
potential for using ETF to monitor student progress and
offer automated, formative feedback.
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