
Pinpoint: A Record, Replay, and Extract System to
Support Code Comprehension and Reuse

Wengran Wang1, Gordon Fraser2, Mahesh Bobbadi1, Benyamin T. Tabarsi1,
Tiffany Barnes1, Chris Martens1, Shuyin Jiao1, Thomas Price1

1North Carolina State University, Raleigh, USA
2University of Passau, Passau, Germany

wwang33@ncsu.edu, gordon.fraser@uni-passau.de, mbobbad@ncsu.edu, btaghiz@ncsu.edu,
tmbarnes@ncsu.edu, crmarten@ncsu.edu, sjiao2@ncsu.edu, twprice@ncsu.edu

Abstract—Block-based programming environments, such as
Scratch and Snap!, engage users to create programming arti-
facts such as games and stories, and share them in an online
community. Many Snap! users start programming by reusing and
modifying an example project, but encounter many barriers when
searching and identifying the relevant parts of the program to
learn and reuse. We present Pinpoint, a system that helps Snap!
programmers understand and reuse an existing program by
isolating the code responsible for specific events during program
execution. Specifically, a user can record an execution of the
program (including user inputs and graphical output), replay
the output, and select a specific time interval where the event of
interest occurred, to view code that is relevant to this event. We
conducted a small-scale user study to compare users’ program
comprehension experience with and without Pinpoint, and found
suggestive evidence that Pinpoint helps users understand and
reuse a complex program more efficiently.

I. INTRODUCTION

Block-based programming environments, such as
Scratch [26] and Snap! [16], provide novice-friendly
features such as block-based editors, and visual, interactive
output. They engage programmers by allowing them to
easily create artifacts that feel interesting and meaningful to
them [30], such as games, apps, animations, or stories.

A common way for users to get started in Scratch or
Snap! is by reusing and modifying another programmer’s work
as an example project [28]. Reusing such example projects
allows programmers to create artifacts that go beyond their
own abilities, while maintaining a sense of ownership over
their work [31]. Such example-centric programming [3] is
commonly seen when learners remix (i.e., copy and modify)
other projects in Scratch’s online community [22], or when
students learn new APIs by exploring examples [37].

However, program reuse requires not only knowledge of the
programming language and APIs in the example [36], but also
skills such as code navigation and code comprehension [13].
Many Scratch or Snap! users are beginner programmers with-
out strong prior programming experience [9], and can easily
encounter barriers when identifying, understanding, and inte-
grating features from example programs [36]. This suggests a
need to help such users navigate complex examples, identify
and understand which code is responsible for specific features,
and integrate them into their own program.

In this work, we present Pinpoint, a system that helps
Snap! programmers understand and reuse an existing program
by isolating the code responsible for specific events during
program execution. Specifically, a user can record an execution
of the program (including user inputs and graphical output),
replay the output, and select a specific time interval where
the event of interest occurred. Pinpoint then identifies and
displays the code responsible for creating that event, including
the needed set-up code. Unlike prior systems to support
example playback and understanding (e.g. [6, 14]), which only
highlight a relevant line of code, Pinpoint presents users with
complete, executable code slices [40] that demonstrate specific
functionality. We use dynamic program slicing [1] to create
such code slices for selected time intervals, and then further
subdivide them according to different aspects of functionality
(e.g., movement, cloning, etc.) by creating slice profiles [29].

We evaluated Pinpoint in a user study with 17 programmers
with various levels of programming background. We found
suggestive evidence that Pinpoint improved users’ ability to
integrate example code into their own projects. Follow-up
interviews revealed specific ways that Pinpoint helped,
including allowing users to relate specific example code to
output and helping to focus on relevant parts of the example
code. Our primary contributions are: 1) A set of design
goals for a system that helps Snap! programmers identify
responsible code for a program behavior, based on a formative
study; 2) The design and implementation of the Pinpoint
system, which isolates a specific code slice responsible for
certain event; and 3) A user study for evaluating the impact
of Pinpoint to help with reuse tasks.

II. RELATED WORK

Pinpoint is based on Snap!, a block-based, graphical pro-
gramming environment [16] that engages novice programmers
and end users to easily build visual, interactive apps and stories
[12]. The Snap! programming editor includes one or more
programmable sprites, each of which represents an actor on the
Snap! stage, and carries out its own code instructions written
by the user.

Snap! was originally based on Scratch [26], a highly-
popular novice programming environment. A core feature of
Scratch and Snap! are their online communities, which are

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

built on the culture of remixing [8], where users can click the
“Remix” button to make a copy and modify to start their own
version [22], allowing them to collaborate creatively [27] to
share ideas and learn from each other [31]. A large portion
of Scratch projects are remixed projects [28], but as many
projects are relatively complex to remix [22], remixers may
not always learn from reuse. Amanullah and Bell found that
remixers rarely understand the original program, and rarely
transfer concepts from the remixed program to their own future
programs [2]. Khawas et al. also found that the remixers
rarely used cloning correctly or included new procedures [22].
Furthermore, remixers frequently delete sprites [22], showing
a need to extract particular functionalities from programs.

A. Code Reuse

Remixing is an example of code reuse, which refers to
the process of identifying useful components of the example
code and integrating them into one’s own program [18].
Programmers reuse code examples for different purposes, such
as cloning and owning existing software [10], exploring ideas,
understanding implementation details, and debugging their
own code [38]. Learning from code examples before or while
making a similar program has been shown to help students
not only complete the program faster [41], but also perform
better in a concept-related post-test [33], and effectively learn
how to use APIs later in their own code [19].

Holmes et al. conducted four case studies on programmers’
process of code reuse, and characterized the reuse process into
two stages: 1) locating and selecting and 2) integrating [18].
During the locating and selecting stage, programmers need to
navigate through a complete example program to find relevant
areas of interest [18]. This process can be challenging for
both experienced and novice programmers. For example, Ko
et al. found that in this selection stage, software developers
begin by searching for relevant information, but they often
make use of limited and misrepresented cues in the program
or the environment, which would cause failed searches [24].
Similarly, Gross et al. conducted an observational study for
14 novice programmers to identify code responsible for a
target functionality and found that they engage in a cyclic
search process of 1) generating assumptions based on a search
target in the code or output, and then 2) reading and searching
code to adjust or expand the potential code region relevant to
the target functionality. These programmers frequently made
false assumptions and failed 59% of the code identification
tasks [13]. These results suggest that programmers need sup-
port that helps them make more accurate assumptions when
relating functionality to a relevant code segment.

During the integration stage of code reuse, programmers
need to adapt and integrate the selected code into their own
program [18]. During this process, programmers may directly
copy a subset of an example code to their own code, or may
reimplement a functionality by themselves after reading and
learning an example [37]. Prior work has identified many
barriers programmers encounter when integrating example
code [36]. For example, Wang et al. analyzed 44 novice

programmers’ example integration process and found that
these programmers encounter barriers in understanding how
to integrate an unfamiliar code block into their own context,
mapping the functionality of a part of an example to their
own code, and modifying the example to fit their own needs
[36]. Wang et al. also found that students prefer smaller code
examples with few or no unfamiliar code blocks [36]. This
shows the need to craft examples into smaller, comprehensible
code segments so that students may understand a specific
segment before integrating it into their own code.

B. Supporting Code Comprehension & Reuse

Code comprehension refers to the process of programmers
building a mental model of how a piece of code works [13, 35].
Von Mayrhauser defined that a key cognitive process during
code comprehension is generating a hypothesis of the causal
effect from a code segment to its output [35]. Programmers
of different levels may all form an incorrect hypothesis, but
experts discard questionable hypotheses and form correct ones
more quickly than novices [35].

Prior work has developed tools to support program com-
prehension for programming education and end users. For
example, Python Tutor visualizes stack traces for students to
see internal data representations of the program state [15].
However, it is not designed for complex user input and
graphical output of games and apps. Whyline in Alice [7]
helps users ask why and why not questions for debugging
their own code [23]. However, it can only answer object-
specific questions such as “Why did Pacman resize .5?”, but
not “object-relative” [23] questions such as “Why did Pacman
resize after the Ghost moved”, which were frequently asked
by Alice programmers [23].

Some prior work applied record/replay systems to help
users understand or debug programs [6, 14]. Timelapse is
a record/replay-based tool for debugging web applications,
which points to the users the lines of code responsible for a
point of interest during the recorded trace [6]. Similarly, Gross
et al. developed a record/replay tool to help users in Looking
Glass record and select the timeframe of interest during the
playback. The system then highlights the code responsible for
the timeframe [14]. However, both interfaces only highlight
the lines of code responsible for the selected time frame in
the output but do not extract an executable code slice from
the program. In contrast, Pinpoint directly addresses the learn-
ing barriers Snap! programmers encounter when reading and
understanding code examples that are long and include mul-
tiple sprites, leveraging techniques including static [40] and
dynamic code slicing [1]. Pinpoint allows users to select a time
interval in the recorded replay and inspect a decomposition of
the original program, which only includes the part of the code
responsible for the desired output, helping users learn their
desired functionality in a targeted executable code example.

III. SYSTEM DESIGN GOALS & FORMATIVE STUDY

Before introducing the Pinpoint system, we first present
the design goals. To develop these design goals, we con-

ducted a formative, think-aloud study with six students in
our university’s introduction to engineering course (a required
prerequisite for all CS courses) to investigate their code
comprehension experience. The six students had various levels
of programming experience. During the study, we asked the
students to spend two minutes exploring the code of a mid-
sized Snap! programming project (4 sprites, 57 code blocks),
with the goal of being able to explain how that code achieves
the output on the stage. The project was a simplified version
of a space-invaders style game, explained in more detail in
Section IV-A. Using thematic analysis [4], two researchers
transcribed the audio recordings of students’ think-aloud ut-
terances and conducted open-coding on the transcripts, while
referencing corresponding screen recordings for context. They
next discussed and sorted the open codes into three high-level
themes, which revealed patterns of students’ code comprehen-
sion experience when reading an unfamiliar, complex program.

1) Mapping from code to its runtime behavior: While
reading the code, students frequently make hypotheses about
the effect of a piece of code on the output, e.g., “this is the code
for when the bullet touches the enemy, they disappear.”[P1].
However, these hypotheses were frequently erroneous. Prior
work has found that such false hypotheses could lead to errors
and inefficiencies in code maintenance tasks [23]. Therefore
Design Goal 1 is to help students better map a code segment
to its runtime behavior.

2) Bottom-up, linear reading for the whole program:
Several students read the code linearly from the top of the
first sprite to the bottom of the last sprite (4/61). Instead of
starting from the output of the code and relating functionalities
to code (top-down [5, 35]), several students’ learning approach
was primarily bottom-up [13, 35], where they read code first,
and then related the code to its output. As the students were
trying to understand the whole program, our video data shows
that only one student was able to completely read through the
project within two minutes, perhaps due to the length of the
program and the different task of being asked to explain the
output. Therefore, Design Goal 2 is to help students find and
focus on the most important/relevant code for their goal.

3) Not running or modifying code: Several students either
ran the code only once (2/6) or did not run the code at all
(3/6), which may explain students’ misconceptions about its
output, perhaps due to the complexity of the project and not
knowing where to start. Therefore, Design Goal 3 is to present
users with relevant, executable code examples that are small
and specific enough to run and modify.

IV. THE PINPOINT SYSTEM

A. The Pinpoint Design

To illustrate the use of Pinpoint, assume that a user wants
to create a game with a character that shoots a bullet, based
on Space Invaders game (shown in Figure 1), which includes

14 among 6 students. Among the 2 other students, one started from another
sprite, perhaps because it had the least number of code blocks; one student
ran the code multiple times, but it was unclear how the student read the code,
as they did not think aloud to verbalize their thoughts although prompted.

this desired feature. In Space Invaders, the player controls
a ship (blue) and tries to destroy a group of enemy ships
(red) by shooting bullets with the space key. Space Invaders
also has other features that add code complexity: the enemy
ships also move and fire randomly toward the player, and the
player can dodge left and right. The player wins when all
enemies are destroyed. The user wants to identify the relevant
shooting code and incorporate it into their own program. Using
Pinpoint, they can do the following steps, whose numbers
correspond to those highlighted in Figure 1.

1) Step 1: Record an execution: Our first design goal is
to help users visually map the code to its runtime behavior.
Pinpoint allows students to record their program execution by
pressing the green flag to start recording and then pressing
the stop button when they want the recording to stop. Users
can view a replay of their program execution by clicking
the “NEXT” button, or re-record by pressing the green flag
again. While recording, Pinpoint creates an execution trace that
records all user interactions (e.g., key presses), program states
(e.g., variable values and sprite positions), and code executed.
This is used to completely reproduce the program execution.

2) Step 2: Select an event: Our second design goal is
to help users find and focus on the most important/relevant
code for their goal. To do that, Pinpoint uses the slider bar
for students to navigate through the recorded execution trace
(Figures 1 – 2). The slider bar is automatically annotated
with key events during program execution, such as clone
creation/deletion and user inputs (e.g., ←, which refers to
when the left arrow key is pressed). A student can select the
start and end frame (each corresponding to the Snap! stage at
the time index) to identify an event they want to explore. For
example, an event of interest could be “when the space key
is pressed, the bullet shoots out and destroys the enemy”. For
this, a user could select the time interval shown in Figure 1-2.

3) Step 3: Inspect the code: Our third goal is to present
users with relevant, executable code examples that are small
and specific enough to run and modify. To do that, as the user
selects a time interval in the slider bar, Pinpoint automatically
updates the relevant code slice to show only the code necessary
to 1) set up the relevant event (e.g., moving the sprite to a
starting location) and 2) carry out the event (cf. Section IV-B).

To help students understand the extracted code, Pinpoint in-
cludes the following 3 features: 1) “How” questions. One way
to improve code comprehension is asking students to explicitly
track changes to variables while reading code [39]. However,
as code slices may include multiple variables and implicit
properties (e.g., a sprite’s position, size, and appearance), it is
difficult to track all changes. Therefore, the user can filter the
code using the menu tabs above each sprite to select questions,
such as “How does the enemy change its position?”. This will
show only the code relevant to movement and relevant control
structures. These “How” questions can be inspected one at a
time, since students may be interested in only one aspect of
an event (e.g., how the bullet was destroyed) but not others
(e.g., how the bullet moves). We discuss the implementation of
“how” questions in Section IV-B. 2) Highlights for executing

Fig. 1. Pinpoint users can 1) record a program execution (including user input and graphical output), 2) replay a recording and select a time interval where
an event has occurred, and 3) inspect an executable code slice relevant to the event, where the code executed inside the selected time interval is highlighted.

blocks. Helping users quickly navigate to the key blocks for a
code example has been shown to improve code comprehension
[20]. Therefore, Pinpoint highlights the executing blocks in
yellow for a selected interval, while the code blocks that are
not highlighted are required for the program to execute (e.g.,
setup code). 3) The “show full project” button. To allow
users to compare the simplified code slice with the original
program, students can toggle the “show full project” button to
view the complete original program.

Pinpoint provides an augmented Snap! editor, with the fol-
lowing features: 1) It places all sprites into different columns,
as a selected event could impact several sprites (e.g., in “bullet
shooting enemy”). 2) To allow users to both browse and
execute/modify the code when needed, it uses toggle switches
to open/close the code palette and Snap! stage. Users can
add/delete/modify code blocks to tinker with any example code
to verify what the example does (and if it matches their query)
and explore changes that might alter its behavior.

B. Pinpoint Implementation
During Step 3 of the user experience (SectionIV-A), Pin-

point uses dynamic slicing [1] to find the code relevant for
the selected time interval. It then uses static slicing [40] on
top of the dynamic slice to automatically generate the “how”
questions, which students can use to further isolate a code
slice for the specific properties and variables of interest.

1) Using dynamic slicing to generate code corresponding
to students’ selected time interval: The program slice for
a selected time interval (i.e., an executable subset of the
program) is created using the program dependence graph
(PDG) for the program being inspected. The PDG is a directed
graph that consists of nodes which represent the program
statements, and directed edges between these nodes which

indicate control-flow, data-flow, or temporal (wait) dependen-
cies. Pinpoint uses LitterBox [11] to create an inter-procedural
PDG which includes all scripts of the program, as well as
their dependencies caused, for example, by broadcast or clone
events. In general, program slicing consists of a backwards
traversal of the PDG starting from a chosen slicing criterion
(e.g., target statement). In Pinpoint, the code executed in the
selected time interval serves as a slicing criterion, such that the
dynamic slice represents the subgraph consisting of nodes that
(1) are covered in the execution trace, and (2) are reachable
in a backwards traversal from any nodes executed within
the selected time interval. The result, for example shown in
Figure 1, is a subset of the code which was either executed in
the selected time or sets up the start state of the time interval.

2) Using static slicing [40] to generate “How” questions:
In order to generate “How” questions, Pinpoint further slices
the program based on different sprite attributes (position,
direction, size, visibility, sound effect, volume, layer, appear-
ance, and clone status). To achieve this, Pinpoint creates the
slice profile [29] for the dynamic slice of the current selection,
i.e., it separates the slice into further sub-slices, each of
which contains only code relevant to one attribute. For each
attribute, the union slice [21] is created as the union of the
backward slices of all statements that use (read) the attribute
with the forward slices of the statements that define (write)
the attributes within these backward slices. The answer to a
“How” question is given by the union slice for the attribute
underlying the question, as for example shown in Figure 2.

V. METHODS

To collect formative data on how students use Pinpoint,
and understand the strengths and weaknesses of the Pinpoint

Fig. 2. Users can also trace changes to individual variables by selecting “How” questions on different variables and attributes.

system, we recruited a small group of students for a within-
subject comparison study. We used the following research
questions to direct our user study and analysis:

1) What is the impact of Pinpoint on students’ ability to
reuse example programs?

2) What are students’ perceptions of their reuse experience?

A. Participants and Study Design

The goal of the study was to see how Pinpoint supported
students in a standard reuse task: The students’ goal is to
create their own relatively simple target project, given a
more complex example project implementing similar, but also
additional, functionality as a reference.

1) Population: We recruited 17 participants from an in-
troductory engineering course (5) and introductory computer
science (12) course, including 11 males and 6 females; 10
Asian, 3 African American, 3 White and 1 Hispanic/Latino.
Participants reported various levels of prior CS experience: 2
had no prior programming experience, 3 had taken only some
tutorials, 11 reported taking or having taken 1-2 programming
courses; 1 reported taking or having taken 3-4 programming
courses. 10 students had not worked with Snap! or Scratch
before, 6 “a few times”, and 1 reported working with Snap!
or Scratch “more than a few times”.

2) Procedure: We used a within-subject design to under-
stand how students use Pinpoint compared to a standard Snap!
interface, through a 90-minute 1-on-1 study over Zoom. Stu-
dents first completed informed consent, a pre-survey, Snap! tu-
torial (to familiarize them with the interface), and an 8-minute
Snap! programming pre-test, which measured students’ prior
knowledge in Snap! programming, including questions about
loops, conditional statements, variables, concurrency, cloning,
and message passing. They then completed two reuse tasks:
Space Invaders and Catch the Dots. To explore examples, all
students used Pinpoint in one task and the standard Snap!
interface in the other (details below). In both tasks, the students

were first given a description of the target task, including a
working version that they could play (without seeing the code).
They were then shown the corresponding example project, and
were asked to identify two key features from that example that
would help them complete the target task. Then, they were
given up to 20 minutes to explore the example project and
complete the target task, the goal of which is to reduce ceiling
effects and force students to explore the example efficiently.
In the first 5 minutes, students were encouraged to read the
example program without directly starting to program, as
learning an example prior to programming has been shown to
be beneficial to students [33]. During reuse tasks, students can
also refer back to the example program at any time. As both
Pinpoint and standard Snap! show the example in a separate
interface, students can read the example project in a different
tab or browser. After each reuse task, we conducted semi-
structured interviews to ask students’ reusing experience and
the challenges they encountered.

To moderate possible effects of task difficulty, we random-
ized which assignment (Space Invaders or Catch the Dots)
the students used Pinpoint on (i.e., a random half of students
used Pinpoint first and half used it second; and independently,
a random half used it on Space Invaders, and half used it
on Catch the Dots). Before using Pinpoint, students learned
a short tutorial on the system using a third task with distinct
features from both the Space Invaders and the Catch the Dots
program. To reduce the effect of learning from the first task,
we designed the requirements of the two tasks to use distinct
code patterns, so completing one task would not give away
the solution to the next. For example, even though the two
projects both have functionalities for collision detection, the
implementation was different (one used forever-if blocks, and
the other one used repeat-until block).

B. Materials: Two Reuse Assignments

Each of the assignments included two parts: the learning
part, where students learn an example program; and the reusing

part, where students use parts of the example program to
build their target program. We created two sets of example-
target project pairs: Space Invaders / Rain Game and Catch
the Dots / Flower Collection Game. The two example tasks
were chosen as they represent the type of programs users may
prefer to reuse in Snap!: they include engaging elements such
as user interactions and multiple-sprite interactions; they were
representative of the size of programs users may remix on
Scratch, and were relatively high in code quality — which has
been shown to enable more high-quality code reusing [17]. For
each assignment, students were given starter code that has all
sprites’ images; one completed feature (move/rotate with key);
and a set of unconnected blocks that would likely be needed
for a correct solution (to reduce block searching time). To
allow two tasks to include distinct features, the code for the
overlapping feature in the two assignments (moving/rotating
an actor with arrow key) was already provided.

1) Space Invaders – Rain Game: In one of the tasks, stu-
dents first explore the Space Invader game from Section IV-A.
The program includes 78 blocks across 5 sprites. They next
complete a Rain Game with 7 distinct features, all having
analogs in the space invader example: 1) when the space key
is pressed, a water drop shows and goes to the location of the
cloud; 2) The water drop can move slowly downwards; 3) Can
create 3 clones of trees; 4) Tree clones are created with differ-
ent x coordinates; 5) when water hits a tree, water disappears;
6) when water hits a tree, tree grows; and 7) when water hits
the lower edge, water disappears. Additionally, Space Invaders
also includes many other features, such as using a variable to
track number of enemy clones, that are not needed for the
Rain Game, requiring the student to select relevant code.

2) Catch the Dots – Flower Collection Game: In the other
task, students first explore another example program (Catch
the Dots), which is similarly complex as the Space Invader
Program (4 sprites, 85 blocks). Students next use the Catch
the Dots program to complete a Follower Collection Game,
which includes two sprites, a flower and a pot. The project
includes the following 7 distinct features that have analogs in
the Catch the Dots program: 1) When the green flag is clicked,
a flower shows at random position and point towards the pot.
2) When the green flag is clicked, set the score to 0; 3) The
flower can move towards the pot; 4) When touching the pot
body, the flower returns; 5) When touching the opening of the
pot, the flower disappears and the score increases by 1; 6) The
flower can restart its movement after it disappears or returns to
the edge; 7) When the score equals 5, the pot says “you win”,
and the game stops. Similar to the Space Invaders program,
Catch The Dots game also includes many other features that
are not needed for the Rain Game, requiring the student to
select relevant code. Note that Flower Collection and Rain
Game both include collision detection functionality, but this
was implemented differently in the example programs.

VI. DATA COLLECTION AND ANALYSIS

To understand in what ways Pinpoint was helpful for stu-
dents, and investigate students’ strategies when using Pinpoint,

we conducted the following data collection and analyses based
on our online tutorial sessions.
1) Pretest: To understand students’ programming knowledge,
we collected students’ scores on the 8-minute pretest they
completed prior to the two reusing tasks.
2) Task Performance: We collected the amount of time it took
to complete programming tasks and their features using screen
recordings and log data. As students were allowed for at least
20 minutes2 to read and write code, but some completed the
task before the 20-minute time limit (7 for task 1, 7 for task
2, with 5 students finishing early on both tasks), we used the
following two measures for task performance:

2.1) Task completion: we analyzed students’ code at the
20-minute timestamp to identify completed programming fea-
tures. Tasks were graded by one researcher, blind to students’
condition, on a binary rubric, where each feature was either
complete (correct functionality) or incomplete/unattempted.
Each task had 7 features, detailed in Section V-B.

2.2) Time on task: For the students who completed the
assignments early, we measured the amount of time spent to
complete the task features. In addition, we collected students’
example reading time, capped at 5 minutes, as all students
were suggested to use the first 5 minutes of their programming
time to read and learn the example project and are required
to start programming at the 5th minute, but they were also
allowed to start earlier than the 5th minute, if they believed
they had learned what was needed from the example program.
3) Qualitative Interview Analysis: We used thematic analysis
[4] to conduct qualitative analysis to our interview data.
As P12 consented to the study but did not consent to be
audio-recorded, our interview data includes 16 students. We
began by performing open coding on the first 6 interview
transcriptions. Two researchers independently read through the
interview transcripts and conducted open coding. They next
met to discuss and merge codes and then arranged codes into
high-level themes by finding commonalities between codes.
They discussed and wrote down definitions of these themes,
and compiled a codebook, which includes each theme and
their definitions. One researcher then coded the remaining 10
transcriptions based on the codebook, updating the codebook
to include 3 themes.

During the semi-structured interviews at the end of each
student’s programming session, we asked students whether
they would prefer using Pinpoint or a standard Snap! interface
for code comprehension. As part of students’ response to this
question (e.g., preferring Snap!, or Pinpoint, or mixed) is quan-
titative rather than qualitative, we report students’ preference
along with the other quantitative data in Section VII-A.

VII. RESULTS AND DISCUSSION

A. RQ1: What was the impact of Pinpoint on students’ ability
to extract and reuse code from an example?

Participants’ interview responses show that 15 out of 16
preferring Pinpoint to Snap!’s interface for example compre-

2One student requested to stop after only 17.5 minutes on Task 2, when
using the standard Snap! interface.

hension (one had mixed feelings). This shows that students
in general perceived Pinpoint to be helpful for code compre-
hension. Next, we discuss the impact of Pinpoint on students’
task performance.

Students completed more features when using Pinpoint.
We first conducted a within-subjects comparison of students’
performance (i.e., # of features completed) on the task
where they had Pinpoint versus when they did not. We
found that students completed more of the 7 features in the
task that uses Pinpoint (M = 5.18; SD = 2.21; Med=6)
than when they did not (M = 4.47; SD = 2.89; Med=5).
This difference was not significant according to a Wilcoxon
signed-rank test3 (p = 0.056; Cohen’s d = 0.28). This shows
that overall, students were able to complete an average of 0.7
more features (10% more of the task) when using Pinpoint,
compared to not using Pinpoint.

Students improved significantly more from Task 1 to
Task 2 when using Pinpoint second. One challenge with
directly comparing students’ performance on the two tasks
(within-subjects) is that this does not control for time (Task 1
vs. Task 2). Students generally improved their performance
in terms of features completed from Task 1 (M = 4.53)
to Task 2 (M = 5.11), having had additional practice in
Snap!. However, if Pinpoint is helpful, we would expect
students to improve more when they transitioned from not
having to having Pinpoint on Task 2 (the Late group), than
when they lost access to Pinpoint from Task 1 to Task 2
(the Early group). To investigate this, we calculated students’
improvement from Task 1 to Task 2 based on the number
of completed features. We found that 6 students (2 Early; 4
Late) performed perfectly on both Tasks (i.e., a ceiling effect),
likely due to higher prior programming experience4. Since the
6 students who completed both tasks perfectly could not have
improved, we analyze their data separately below.

For the remaining 11 students (6 Early; 5 Late), we com-
pared their improvement from Task 1 to Task 2 (Figure 3).
We found that on average the Early group showed far less
improvement (M = −0.17; SD = 1.30; Med=0) than the Late
group (M = 2.20; SD = 1.30; Med=3). A Mann-Whitney
U -test shows that the difference is significant (W = 3.0;
p = 0.031) and the effect size (Cohen’s d = −1.92) is quite
large. Put another way, the Early group did just as well on Task
1 (with Pinpoint) as on their second task (after 20 minutes of
practice, but without Pinpoint), while the Late group did much
better on Task 2 (with both Pinpoint and practice), getting a
median 3 out of 7 more features complete. It is worth noting
that the Late group (after removing the 4 perfectly performing
students) performed worse overall (see Figure 3), which may
have meant they had more room to improve. However, given
the large differences between Early and Late groups, it seems

3We use non-parametric statistical tests, as our dependent variables were
not normally distributed; however, we also report means, SDs and effect sizes
for completeness.

4The 6 students who completed both tasks perfectly scored higher (M =
7.83, SD = 1.33) in the pretest than the 11 students who did not (M = 6.36,
SD = 1.75).

Fig. 3. For the 11 students without perfect performance, The Late group
(shown in yellow) showed significantly more improvement than the Early
group (shown in green).

safe to conclude that for students who did need help with the
reuse task, Pinpoint had a large impact on their performance.

For both of the above findings, it is also possible that
the assignment the student did with Pinpoint impacted their
performance somewhat; however, we found little difference
between learners’ performance in the Space Invaders assign-
ment (M = 4.59; SD = 2.90; Med=6) and the Catch the Dots
assignment (M = 5.06; SD = 2.25; Med=6).

When using Pinpoint, students used more time to read
the example, and less time to complete the programming
task. We also looked at how students spent their time when
working on the reuse task. Considering all 17 students, we
found that they spent on average about half a minute longer
reading the example when using Pinpoint (M = 254 seconds;
SD = 62.0; Med=289) than when using the standard Snap!
interface (M = 220 seconds; SD = 92.5; Med=277), sug-
gesting that Pinpoint may encourage students to spend more
time reading and searching the example code before beginning
to code. However, recall that this reading time still counted
towards students’ 20 minute time limit. Given that students
generally completed more features when using Pinpoint, this
suggests that the extra time for reading paid off. Finally, for the
6 students who completed both tasks perfectly, the time they
spent improved from Task 1 to Task 2. We found that students
completed Task 2 faster in both Early (N = 2; M = 169.5
seconds reduced; SD = 29.0; Med=169.5) and Late groups
(N = 4, M = 186.75 seconds reduced; SD = 199.3;
Med=147), but there was little difference between the groups.
Therefore, Pinpoint may be most helpful for students with
more difficulty in programming.

B. RQ2: What are students’ perceptions of their reuse expe-
rience?

We discuss the key themes on participants’ perceptions and
mindsets during code reuse, based the qualitative interview
analysis.

1) Certainty: Certainty refers to students’ self-perceived
confidence when making decisions or generating hypotheses
during code reuse. Participants expressed relatively high levels
of certainty when using Pinpoint to find a code segment. For
example, participants discussed that the slider bar “makes it
a lot easier finding certain codes”[P13], as alternatively in
Snap!, “you may have to search through ... each sprite, to ...
find code”[P13]. 8 students discussed that the “How” questions
helped them make better searches: “most of these questions
are questions I was having ... when I would be writing code
without [Pinpoint]”[P9]. Participants also expressed relatively
high levels of certainty when using Pinpoint to hypothesize
the runtime behavior of specific code segments: “assigning an
action to ... the code really helps solidify in your brain what
you’re supposed to do”[P5].

Students discussed uncertainty when understanding unfamil-
iar code blocks both using and not using Pinpoint, e.g., “it was
harder to understand the repeat until [code block]”[P13]. One
also discussed uncertainty when trying to navigate through the
slider bar to “get it to the right time frame”[P15].

2) Direction: Direction refers to the approach that partici-
pants employ to navigate through the example program. Many
discussed a depth-first, top-down approach when using Pin-
point, where instead of learning the entire program, they con-
centrate on the desired code segment: “it basically changes the
scope, like instead of having to read through the whole code,
you can just zoom in on the specific piece you want and look
at that.”[P2] Three students specifically mentioned that the
code highlights were helpful for further focusing their attention
on the most relevant code (i.e., code that ran, as opposed to
setup code): “I could see for specific actions, which one I
had to focus on”[P10], in contrast to their experience without
Pinpoint: “it kind of points it out for you... which section of
the code is working versus me just looking at the code and not
being able to recognize which portions are being used.”[P6].

For the task using the standard Snap! interface, similar to
the formative study (Section III) students in general described
a breadth-first, bottom-up approach: “I clicked on each [sprite]
and see ... what happened”[P4]. But some discussed negative
feelings about their learning experience: “I have not ... learned
anything ... in detail about this program”[P4].

3) Annotation: Annotation refers specifically to the mental
process defined by Letovsky in the Code Cognition Model
[25], where programmers mentally manage and structure
hypotheses about how multiple code segments interrelates,
and how they map to the program’s runtime behavior. Some
students, while using standard Snap!, discussed challenges
with the annotation process: “I was trying to understand ...
(the) timeline, (as) I know there is a moment when I have
to add when clones start, and then there is a moment I
have to put ... clone myself.”[P8]. But many discussed being
able to build the connection of different code segments more
easily when using Pinpoint: “[Pinpoint] showed me what was
being done by section and so ... when I ... was progressing
through [the slider bar]. [Pinpoint] added more [code blocks],
I was like, oh, okay, so that is what this additional section

does.”[P6]. In addition, students discussed that they perceived
code dependencies more easily when using Pinpoint: “I prefer
... looking at [Pinpoint] where the code is divided up. ... I
think it is easier to look at how stuff are related that way,
instead of just looking at it line by line.”[P11], as for a specific
event of interest, the full program include many irrelevant
dependencies, which may distract students.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present Pinpoint, a novel interface that
helps Snap! programmers to understand and reuse an example
program by isolating a specific code slice relevant to students’
target event of interest. Our user study with 17 students
provides suggestive evidence that Pinpoint improves students’
ability to integrate code examples into their own projects.
The students explained forming more confident hypothesis
about a code segment’s runtime behaviors, employing more
focused, targeted example learning approach, and connecting
different code segments more easily using Pinpoint. Overall,
this suggests that Pinpoint achieved its design goals.

While these are promising results, our study and the Pin-
point system have limitations that we will address in future
work. As a small-sample, within-subject factorial crossover
design [34], our study suffers from variances caused by
the wide range of students’ programming backgrounds, the
different order of tasks, and students being able to stop early
at any time during example learning.

In addition, no participant explicitly mentioned running the
code, and our observations also found limited testing/running
behavior when using Pinpoint during the study. In future work,
we may conduct specific interview questions on why students
may choose to test or simply view the example code. The
interview analysis also shows that users encountered barriers
when trying to understand unfamiliar code blocks both when
using and when not using Pinpoint. This shows that although
Pinpoint allowed students to map a code segment to its func-
tionality, it does not teach students the fundamental conceptual
knowledge of a piece of code, which is an important subcom-
ponent of robust API knowledge [32]. In the future, it may
be helpful to point users to the documentation and tutorials
inside Pinpoint, when they encounter unfamiliar blocks.

We may also further simplify the search experience: For
example, one student noted in the interview that, as the reuse
program becomes longer and more complex, the recorded trace
can be long and difficult to navigate. Therefore, similar to
how Pinpoint automatically generates the “How” questions
to simplify search, we may intelligently generate higher-level
questions regarding potential selections on the slider bar (e.g.,
auto-generating a “How to shoot the bullet” question), which
users can click on and directly inspect a code slice, based on
an auto-selected time interval.

IX. ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
under Grant No. 1917885, and partially supported by the
German Research Foundation under Grant FR 2955/3-1.

REFERENCES

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing.
ACM SIGPlan Notices, 25(6):246–256, 1990.

[2] K. Amanullah and T. Bell. Evaluating the use of remixing
in Scratch projects based on repertoire, lines of code
(loc), and elementary patterns. In 2019 IEEE Frontiers
in Education Conference (FIE), pages 1–8. IEEE, 2019.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klem-
mer. Example-centric programming: integrating web
search into the development environment. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 513–522. ACM, 2010.

[4] V. Braun and V. Clarke. Thematic analysis. 2012.
[5] R. Brooks. Towards a theory of the comprehension

of computer programs. International journal of man-
machine studies, 18(6):543–554, 1983.

[6] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Inter-
active record/replay for web application debugging. In
Proceedings of the 26th annual ACM symposium on User
interface software and technology, pages 473–484, 2013.

[7] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool
for introductory programming concepts. In Journal of
Computing Sciences in Colleges, volume 15, pages 107–
116. Consortium for Computing Sciences in Colleges,
2000.

[8] S. Dasgupta, W. Hale, A. Monroy-Hernández, and B. M.
Hill. Remixing as a pathway to computational think-
ing. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Com-
puting, pages 1438–1449, 2016.

[9] D. A. Fields, M. Giang, and Y. Kafai. Programming
in the wild: trends in youth computational participation
in the online scratch community. In Proceedings of
the 9th workshop in primary and secondary computing
education, pages 2–11, 2014.

[10] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. Enhancing clone-and-own with systematic
reuse for developing software variants. In 2014 IEEE
International Conference on Software Maintenance and
Evolution, pages 391–400. IEEE, 2014.

[11] G. Fraser, U. Heuer, N. Körber, E. Wasmeier, et al. Lit-
terbox: A linter for scratch programs. In 2021 IEEE/ACM
43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-
SEET), pages 183–188. IEEE, 2021.

[12] D. Garcia, B. Harvey, and T. Barnes. The beauty and joy
of computing. ACM Inroads, 6(4):71–79, 2015.

[13] P. Gross and C. Kelleher. Non-programmers identifying
functionality in unfamiliar code: strategies and barriers.
Journal of Visual Languages & Computing, 21(5):263–
276, 2010.

[14] P. A. Gross, M. S. Herstand, J. W. Hodges, and C. L.
Kelleher. A code reuse interface for non-programmer
middle school students. In Proceedings of the 15th
international conference on Intelligent user interfaces,

pages 219–228, 2010.
[15] P. J. Guo. Online python tutor: embeddable web-based

program visualization for cs education. In Proceeding of
the 44th ACM technical symposium on Computer science
education, pages 579–584, 2013.

[16] B. Harvey, D. D. Garcia, T. Barnes, N. Titterton, D. Ar-
mendariz, L. Segars, E. Lemon, S. Morris, and J. Paley.
Snap! (build your own blocks). In Proceeding of the
44th ACM technical symposium on Computer science
education, pages 759–759, 2013.

[17] B. M. Hill and A. Monroy-Hernández. The cost of
collaboration for code and art: Evidence from a remixing
community. In Proceedings of the 2013 conference
on Computer supported cooperative work, pages 1035–
1046, 2013.

[18] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger.
The end-to-end use of source code examples: An ex-
ploratory study. In 2009 IEEE International Conference
on Software Maintenance, pages 555–558. IEEE, 2009.

[19] M. Ichinco, W. Y. Hnin, and C. L. Kelleher. Suggesting
API usage to novice programmers with the example guru.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pages 1105–1117, 2017.

[20] M. Ichinco and C. Kelleher. Exploring novice program-
mer example use. In 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
pages 63–71. IEEE, 2015.

[21] M. Kesselbacher and A. Bollin. Towards the use of
slice-based cohesion metrics with learning analytics to
assess programming skills. In 2021 Third International
Workshop on Software Engineering Education for the
Next Generation (SEENG), pages 6–10. IEEE, 2021.

[22] P. Khawas, P. Techapalokul, and E. Tilevich. Unmixing
remixes: The how and why of not starting projects from
scratch. In 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 169–
173. IEEE, 2019.

[23] A. J. Ko and B. A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 151–158,
2004.

[24] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung.
An exploratory study of how developers seek, relate,
and collect relevant information during software mainte-
nance tasks. IEEE Transactions on software engineering,
32(12):971–987, 2006.

[25] S. Letovsky. Cognitive processes in program compre-
hension. Journal of Systems and software, 7(4):325–339,
1987.

[26] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch programming language and
environment. ACM Transactions on Computing Educa-
tion (TOCE), 10(4):1–15, 2010.

[27] A. Monroy-Hernández. Scratchr: sharing user-generated
programmable media. In Proceedings of the 6th inter-

national conference on Interaction design and children,
pages 167–168, 2007.

[28] A. Monroy-Hernández. Designing for remixing: Support-
ing an online community of amateur creators. PhD thesis,
Massachusetts Institute of Technology, 2012.

[29] L. M. Ott and J. J. Thuss. Slice based metrics for estimat-
ing cohesion. In [1993] Proceedings First International
Software Metrics Symposium, pages 71–81. IEEE, 1993.

[30] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, et al. Scratch: programming for
all. Communications of the ACM, 52(11):60–67, 2009.

[31] R. Roque, N. Rusk, and M. Resnick. Supporting diverse
and creative collaboration in the scratch online commu-
nity. In Mass collaboration and education, pages 241–
256. Springer, 2016.

[32] K. M. Thayer. Practical Knowledge Barriers in Profes-
sional Programming. PhD thesis, 2020.

[33] J. G. Trafton and B. J. Reiser. The contributions of study-
ing examples and solving problems to skill acquisition.
PhD thesis, Citeseer, 1994.

[34] S. Vegas, C. Apa, and N. Juristo. Crossover designs
in software engineering experiments: Benefits and perils.
IEEE Transactions on Software Engineering, 42(2):120–
135, 2015.

[35] A. Von Mayrhauser and A. M. Vans. Program com-
prehension during software maintenance and evolution.
Computer, 28(8):44–55, 1995.

[36] W. Wang, A. Kwatra, J. Skripchuk, N. Gomes, A. Mil-
liken, C. Martens, T. Barnes, and T. Price. Novices’

[41] R. Zhi, T. W. Price, S. Marwan, A. Milliken, T. Barnes,

learning barriers when using code examples in open-
ended programming. In Proceedings of the 26th ACM
Conference on Innovation and Technology in Computer
Science Education V. 1, ITiCSE ’21, pages 394–400,
New York, NY, USA, 2021. Association for Computing
Machinery.

[37] W. Wang, A. Le Meur, M. Bobbadi, B. Akram, T. Barnes,
C. Martens, and T. Price. Exploring design choices to
support novices’ example use during creative open-ended
programming. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, pages
619–625, 2022.

[38] W. Wang, Y. Rao, R. Zhi, S. Marwan, G. Gao, and
T. Price. The step tutor: Supporting students through
step-by-step example-based feedback. ITiCSE’20 - Pro-
ceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education, To be
published, pages 391–397, 2020.

[39] B. Xie, G. L. Nelson, and A. J. Ko. An explicit strategy to
scaffold novice program tracing. In Proceedings of the
49th ACM Technical Symposium on Computer Science
Education, pages 344–349. ACM, 2018.

[40] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A
brief survey of program slicing. ACM SIGSOFT Software
Engineering Notes, 30(2):1–36, 2005.
and M. Chi. Exploring the impact of worked examples
in a novice programming environment. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, pages 98–104. ACM, 2019.

	Introduction
	Related Work
	Code Reuse
	Supporting Code Comprehension & Reuse

	System Design Goals & Formative Study
	Mapping from code to its runtime behavior
	Bottom-up, linear reading for the whole program
	Not running or modifying code

	The Pinpoint System
	The Pinpoint Design
	Step 1: Record an execution
	Step 2: Select an event
	Step 3: Inspect the code

	Pinpoint Implementation
	Using dynamic slicing to generate code corresponding to students' selected time interval
	Using static slicing xu2005brief to generate ``How'' questions

	Methods
	Participants and Study Design
	Population
	Procedure

	Materials: Two Reuse Assignments
	Space Invaders – Rain Game
	Catch the Dots – Flower Collection Game

	Data Collection and Analysis
	Results and Discussion
	RQ1: What was the impact of Pinpoint on students' ability to extract and reuse code from an example?
	RQ2: What are students' perceptions of their reuse experience?
	Certainty
	Direction
	Annotation

	Conclusions and Future Work
	Acknowledgements

