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ABSTRACT
Regardless of skill level and background, programming can
be challenging for all students. However, in the early stages
of learning, challenges may particularly lead to a decrease
in students’ sense of self-efficacy and interest in computer
science. Hence, finding the moments when novices struggle
during programming will help us provide support and inter-
vene at the proper time. Some efforts have been made to find
out when students struggle during a specific assignment, but
none of them (to our knowledge) have targeted open-ended
tasks, i.e., tasks that have no fixed solutions or processes
to reach the objective. This study aims to determine how
students’ coding traces in a block-based programming envi-
ronment relate to their struggles while completing an open-
ended project. We ran a study in an introductory program-
ming course that used a block-based language for the first 8
weeks of a semester-long class, culminating in a 2-week-long
project. Students were given class time for two sessions to
work on their projects in pairs, during which we collected
students’ coding traces. Based on experts’ hypotheses and
two prior studies, we developed detectors to parse coding
traces and find struggle moments automatically. We also
conducted a survey at the end of each session to ask students
about their satisfaction with their programming and feel-
ings when encountering programming challenges for which
we defined detectors. We investigated how well moments
identified by our detectors associated with students’ imme-
diate survey responses. Our results show that students’ per-
ceptions of the experienced challenges significantly correlate
with detectable patterns in their coding traces.
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1. INTRODUCTION AND BACKGROUND
Programming is a difficult subject to learn for many students
and especially novices [6, 17]. While tutoring and professor
support can greatly aid students in learning, this help is in-
creasingly limited. Computer Science (CS) enrollment rates
have risen significantly since 2006, but professor and faculty
staffing has failed to keep up [9]. This has produced elevated
student-to-faculty ratios in computer science courses, espe-
cially introductory computer science courses where students
might need the most support [8]. A novice programmer’s
inability to access help when needed could be detrimental
to their computer science learning and potentially give rise
to a higher dropout rate in CS [10]. Gorson and O’Rourke
pointed out that in struggling moments, students negatively
self-assess their programming ability, leading to lower self-
efficacy and thus higher drop-out rates in computer science
[4].

This demand-supply imbalance sets off a great need for an
intelligent interface to determine when a student needs help
or intervention [10]. If struggle moments could be detected
early in novice programming, a timely intervention, such as
automated help, would benefit students[12, 11]. This has
made detecting struggle moments an interesting topic for
many researchers to investigate. Some prior studies focused
on finding novices’ coding characteristics and behaviors by
analyzing their coding traces [1, 5]. However, their con-
centration is not in moments of struggle. Another group
of papers focused on finding patterns in coding traces that
can specify struggling students based on their grades. To
do that, they used machine learning or statistical models to
find the relationship between traces and students’ grades or
performances [3]. Some other papers used the mapping cost
or the similarity score between students’ coding traces and
correct solutions to detect struggle and progress moments
or to provide hints and feedback [2, 12, 18].

Our work bears two major differences from the mentioned
studies. First, although in previous studies the assignments
were open-ended, students were given specific questions that
could have multiple solutions with a relatively clear struc-
ture. In contrast, we used code traces of students’ projects
for our detectors, where students were asked to choose a
topic and create a program in Snap! . Second, our paper
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does not fully rely on students’ grades or experts’ reviews to
evaluate proposed struggle detectors. We defined struggle
detectors based on students’ perceptions of negative self-
assessment moments and gauged the performance of detec-
tors mainly against students’ reported feelings towards each
of the mentioned moments. This is particularly significant
since being context-sensitive is an important aspect of au-
tomated help in Intelligent Tutoring Systems (ITS), espe-
cially for open-ended assignments and projects [15]. Also, it
is helpful for professors/assistants if they want to determine
why their students may be struggling and how to better help
them. No struggle detectors, to our knowledge, have been
developed and shown to work for open-ended programming
projects where every student project can be different.

This work is driven by the following research questions:

• RQ1: What detectable patterns in students’ coding
traces are associated with self-reported struggle mo-
ments during doing an open-ended block-based project?

• RQ2: How do these detectable patterns correlate with
novices’ perceptions of the experienced challenges in
completing an open-ended block-based programming
project?

We propose, create, and test detectors that can identify mo-
ments of student struggle when programming in a block-
based environment. The final goal of the detectors is to work
for any assignment and project in Snap! , a block-based pro-
gramming language. Moreover, we aim to design detectors
that not only identify moments of student struggle but also
give insight into why the student may be struggling.

2. DATA CONTEXT
2.1 Trace Log Data
The dataset we analyzed comes from an undergraduate in-
troductory computer science course with 45 non-computer
science major students at a public university in Spring 2022.
Students worked in Snap! for the first 8 weeks of a semester-
long class. This study was conducted while students were
completing their open-ended midterm projects, which re-
quired them to create an interactive program in Snap! us-
ing concepts they learned throughout the semester, such
as loops and conditionals. After this project, the block-
based portion of the class ended, and students began learn-
ing Python. Students were allowed to work in groups of 1-3
people. They had two class periods to work on their project
and were expected to finish any remaining work outside of
class. We collected code traces from these two days when
students were working on their projects in class.

In this course, students programmed their project in iS-
nap[16], which is a variation of the Snap! programming en-
vironment. iSnap generates a record for each action that stu-
dents take in the programming environment, such as adding
sprites and clicking on the run button. A set of these records
relating to a student or a group, which is also called a stu-
dent’s coding trace, allows researchers to track and analyze
students’ coding patterns and progress. iSnap also creates
a snapshot of the whole environment at specific timestamps
that makes it possible to rebuild and replay the steps of a
student during a coding period.

2.2 Survey
After each coding session, we administered a survey asking
students about their overall satisfaction with their progress
that day and self-assessment moments they encountered.The
surveys on each day were identical and inspired by a sur-
vey originally developed by Gorson and O’Rourke, in which
the researchers identified 13 common moments during which
students negatively self-assessed their programming abilities
in an introductory course [4].

As shown in Table 1, the first portion of the survey asked
students, “How did you feel about your programming expe-
rience/progress today?” and offered a six-point Likert scale
from “Very dissatisfied” to “Very satisfied”. The second por-
tion of the survey asked the students if they experienced 15
scenarios and if so, how each made them feel. The first 13
scenarios corresponded to the 13 moments when students
self-assessed, as identified by Gorson and O’Rourke. The
last two scenarios were the negation of two of the previ-
ous self-assessment moments. For each scenario, students
could choose between the options of “Didn’t happen,”“I felt
bad/frustrated,”“It was normal and I felt OK,” and “It was
good/useful or helped me learn.”We modified the language
of the scenarios to fit the perspective of a student using a
block-based language instead of a text-based language[4]. Of
the entire class, 16 students responded to the survey on the
first day and 13 participated on the second day.

2.3 Data Cleaning
We cleaned data via the following three steps:

Step 1: We removed the traces of pairs who did not consent
to and complete at least one survey.

Step 2: We matched students’ traces to their survey re-
sponses. Connecting each survey to its corresponding trace
log was highly challenging since students were asked to an-
swer the survey individually but were allowed to work in
groups. To handle pair programming, the iSnap environ-
ment has two input boxes in which students are asked to
enter their name and their partner’s name before entering
the programming environment. In all cases where a stu-
dent had multiple traces, the trace in which their name was
entered as the first programmer was used to link to their
survey responses. Except for one student, all who partici-
pated in our study had a code trace in which their name was
specified as the first programmer. In that one exceptional
case, the student whose name was entered as the partner
did not have any separate trace with their name as a first
programmer. Therefore, the trace of this pair was allocated
to both students.

Step 3: We combined disjointed traces. Some students worked
across multiple computers during a class period, resulting in
what we call disjointed coding traces. By looking at the
timestamps of traces for each student, we specified traces
that overlapped in terms of starting and finishing time. Then,
by scrutinizing the actions in each trace, we found any code
traces that were scratch work, where students were clearly
trying out something minor on a separate Snap! window but
not in the main project. We discarded such scratch traces
and put the remaining disjointed traces together based on
their timestamps to obtain a complete trace.



Table 1: Survey Questions and Answers about Self-Assessment Moments in Programming
Survey Questions Survey Answers
How did you feel about your programming experience/progress today? 1. Very dissatisfied

2. Somewhat dissatisfied
3. Mildly dissatisfied
4. Mildly satisfied
5. Somewhat satisfied
6. Very satisfied

Think about your programming experience today. How did you feel if or 1. Didn’t happen
when you experienced the following things? 2. I felt bad/frustrated
1. Got a simple error, like something not working as desired 3. It was normal and I felt OK
2. Started over or erased a significant portion of code to try again 4. It was good/useful or helped me learn
3. The code was not working as expected
4. Stopped programming to plan
5. Got help from others, (e.g. partner or TA)
6. Spent a long time working on a feature
7. Felt unsure where/how to start programming
8. Looked up how to do something
9. Spent time planning before starting to program
10. Spent a long time looking for a simple error or mistake
11. Struggled to fix errors and get the program to work
12. Took longer than expected to finish a feature
13. Felt unsure about what to work on
14. Finished a feature quicker than expected
15. Fixed an error faster than expected

Finally, these steps resulted in the construction of 19 coding
traces matched to the survey responses. These 19 traces
comprised aggregately 12262 rows each showing a student’s
action in iSnap. Table 2 shows the summary of 19 students’
demographics.

Table 2: Summary of Students’ Demographic Data
Demographic Category Count Percentage

Gender
Female 7 36.8%
Prefer not to say 1 5.3%
Male 11 57.9%

Race

Asian 1 5.3%
Black or African American 1 5.3%
Mixed 3 15.8%
Prefer not to say 2 10.5%
White 12 63.2%

3. METHODOLOGY
3.1 Creating Detectors
The goal of our research was to create detectors that identify
when students are struggling. We considered seven scenar-
ios that may be indicative of student struggle and created a
detector for each of these scenarios. We designed these de-
tectors using Gorson and O-Rourke’s research on moments
in which students negatively self-assess [4], the research of
Dong et al. on analyzing tinkering behaviors [1], and the
suggestions of four experts, comprised of a professor who is
a CS education specialist and three Ph.D. students, all in-
cluded as the authors of this paper. Two of these experts
have conducted extensive studies on Snap! and two others
are experts in Snap! programming.

We primarily used Gorson and O’Rourke’s research to design

detectors because we intended to create detectors that iden-
tify when students negatively self-assess, thus catching stu-
dents at these moments to provide aid and reduce negative
self-assessments [4]. We additionally considered research on
tinkering proposed by Dong et al. because they proposed
identifiable coding actions that corresponded with students’
tinkering moments during block-based programming. There
are many definitions for tinkering, but the definition of Petre
and Blackwell is concise and complete. They described tin-
kering as “a non-goal-oriented (or a theoretical) exploration
of a problem space”[14]. Uncertainty or hesitation are com-
mon critical themes in the definition of tinkering, and these
characteristics in code are useful to detect moments when
students may be struggling [1].

In general, detectors read and analyze each students’ coding
trace to find the desired patterns. In the following para-
graphs, we describe each of the seven detectors and the rea-
son behind their designs. Table 3 also shows the names
of the detectors, the negative self-assessment moments that
correspond to each of them, and a brief description about
them.

Sprite Deletion: This detector counts the number of mo-
ments when a student removes one or more sprites. Re-
moving a sprite results in removing all the code inside that
sprite and could possibly indicate that the student is delet-
ing a large portion of code, realizing that a significant por-
tion does not perform as intended or is not salvageable and
cannot be fixed. We hypothesized that this action could be
indicative of a student starting over or erased a significant
portion of the code, a negative self-assessment moment [4].

Overly Idle: This detector identifies the number of times
when there is a gap of more than five minutes between stu-



Table 3: Struggle Detectors and their Corresponding Self-Assessment Moments and Description
Detector Name Survey Corresponding Moment Detector Description
Sprite Deletion 2. Started over or erased a significant portion of code to try again Deleting a whole sprite

Overly Idle

4. Stopped programming to plan More than 5 minutes with
7. Felt unsure where/how to start programming no programming activity
8. Looked up how to do something
9. Spent time planning before starting to program
10. Spent a long time looking for a simple error or mistake
13. Felt unsure about what to work on
14. Finished a feature quicker than expected

Scant Blocks
7. Felt unsure where/how to start programming 5 minutes passing at the beginning with
9. Spent time planning before starting to program all scripts having fewer than 3 blocks
13. Felt unsure about what to work on

Minor Change

1. Got a simple error, like something not working as desired Tweaking parameters of blocks or
3. The code was not working as expected reordering blocks, adding or removing
5. Got help from others (e.g. partner or TA) 1-2 blocks between code runs
8. Looked up how to do something
10. Spent a long time looking for a simple error or mistake
11. Struggled to fix errors and get the program to work

Last Rows Count

2. Started over or erased a significant portion of code to try again Counting the number of rows within
6. Spent a long time working on a feature the last 10 minutes of programming
7. Felt unsure where/how to start programming
10. Spent a long time looking for a simple error or mistake
12. Took longer than expected to finish a feature
13. Felt unsure about what to work on
15. Fixed an error faster than expected

Excessive Runs
3. The code was not working as expected Running the code several times
11. Struggled to fix errors and get the program to work without making changes

Blocks Per Minute All moments can be relevant
The average number of blocks
within one minute of programming

dents’ actions in iSnap. Being overly idle could conceivably
mean that a student is planning or thinking about what to
do next, is off-task, or is not sure how to continue. While
planning code and being off-task are not necessarily indica-
tions that a student is struggling, we aimed to capture the
moments when a student is not sure how to progress. We
also thought idleness could detect negative self-assessment
moments such as feeling unsure how to start programming,
looking up how to do something, planning, or finishing a
feature quicker than expected [4].

Scant Blocks: This detector identifies if, after five minutes of
beginning a project, all coding scripts have less than three
blocks. Having a few blocks at the beginning of a coding
session can possibly suggest that a student does not know
how to start or has trouble starting, but may also indicate
that the student was planning before programming [4].

Minor Change: This detector recognizes tweaking parame-
ters of blocks, reordering blocks, or adding or removing 1-2
blocks between code runs and counts the number of times
they occurred. This action is a form of test-based tinkering
identified by Dong et al. and signifies debugging behav-
ior [1]. Therefore, making small changes between runs can
conceivably indicate the following negative self-assessment
moments proposed by Gorson and O’Rourke: the student
had a simple error; the code was not working as expected;
the student got help from others; the student looked up how
to do something; the student spent a long time looking for
a simple error, or struggled to fix errors [4].

Last Rows Count: This detector counts how many coding
actions were logged for a student in the last ten minutes
of their programming session. We predicted the detector,
which essentially quantifies how active a student is behav-
ing at the end of their programming session, could indicate
how a student feels about their coding session or if they had
significant struggles earlier in their coding session such as
starting over on a coding section, spending longer than ex-
pected on a feature, or being unsure how to initially start
programming [4].

Excessive Runs: This detector recognizes and counts when
the code is run more than two times without making any
changes. This action is a form of test-based tinkering iden-
tified by Dong et al. and could signify either frustration or
that a student is trying to understand the behavior of their
code output [1]. Therefore, we hypothesized that running
the code several times without making changes could indi-
cate negative self-assessment moments such as the code was
not running as expected, or the student was struggling to
fix errors. [4].

Blocks Per Minute: We included a general detector that cal-
culated the average rate of how many blocks a student placed
per minute. The goal of this detector was not to identify any
specific struggle moment, but to serve as a general indicator
of how the student was progressing. Based on the work of
Dong et al. [2], we believe that the amount of code added
per minute, compared to the values across an entire class,
may be used as an indicator of progress or struggle.



4. RESULTS AND DISCUSSION
4.1 Analysis Protocol
To determine how accurate the detectors are at identifying
when a student may be struggling, we ran a post hoc analysis
to find out if the detectors correlated with students’ survey
responses and project grades. We also looked through code
traces to determine when and why detectors had a high or
low correlation with certain survey responses.

The survey responses were converted to numerical values
before analysis. The six-point Likert question that asked
students “How did you feel about your programming expe-
rience/progress today?” was converted into a numerical re-
sponse that ranged from ‘1’ to ‘6’, corresponding with “Very
dissatisfied” to “Very satisfied,” respectively. As mentioned
earlier and shown in Table 1, for each of the 15 scenarios,
students indicated if they did not encounter this scenario or
how they felt about it if they did. We used different methods
for handling “Not Applicable” or “Didn’t Happen” responses
when analyzing Likert scale surveys. We separately ana-
lyzed the occurrence (if the scenario occurred) and the va-
lence (how the student felt given the scenario occurred). The
idea of separating responses into two metrics was inspired
by the zero-inflated model [7] which was mainly proposed
for handling a high number of zero observations in a count
data.

For each scenario on the survey, if the scenario occurred
for the student, their response was given a value of ‘1’. If
the scenario did not occur, the response was given a value
of ‘0’. On a separate metric, for each scenario, if the stu-
dent said that the scenario did not occur, the response was
dropped during the analysis. If the student selected “I felt
bad/frustrated”, they were given a value of ‘1’; for “It was
normal and I felt OK”, they were given a value of ‘2’; and
for “It was good/useful or helped me learn”, they were given
a value of ‘3’.

We additionally imported the grade each student received
for their project related to the corresponding code trace. We
then found how closely the frequency of each detector was
activated or the respective metric of the detector correlated
with the survey responses and project grades by finding the
Spearman’s rank correlation coefficient and the p-value. We
used Spearman’s correlation since it covers the ordinal data
type of the survey responses and other data types that we
had in our analysis, such as ratios. We consider a p-value of
below 0.05 to be significant.

Finally, two experts stepped through and tagged students’
code traces to determine if the detectors correctly identified
struggle moments and which struggle moments each detector
missed. The first expert focused on a single trace, examined
all actions the student took during class time, and compared
that to the student’s final submission for the project. The
first expert tagged actions based on the definition of detec-
tors in two general categories: 1) actions and patterns that
could trigger each of the detectors, and 2) actions/patterns
that seemed to reflect struggling but were missed by all de-
tectors. The second expert reconstructed the coding period
of five students with Snap Playback to check how and why
some detectors did not work, but did not do any action-by-
action analysis. To avoid hindsight bias, the second expert

did not look at students’ final submissions. The goal was to
see how these detectors work given the various coding styles
of different students. In summary, this step gave experts
insight into why each detector correctly or incorrectly iden-
tified or failed to identify a moment as a struggling moment.

4.2 Results
Here, we will go through each detector, determine if it was a
good indicator of the scenario we hypothesized it would sig-
nify, and discuss why the detector did or did not achieve its
goal. We will also discuss the relationship between the detec-
tors and two more general variables, i.e., project total grade
and general feeling about programming. Table 4 shows the
correlation coefficients between the valence and occurrence
of the output of each detector and their corresponding mo-
ments. The p-value of each correlation coefficient is also
stated. For project grade and feelings about programming
that do not have valence and occurrence, we wrote the corre-
lation coefficient and p-value in the occurrence column and
N/A (not applicable) in their valence-related cell.

4.2.1 Sprite Deletion
We predicted that Sprite Deletion could be an indicator that
a student started over or erased a significant portion of code
to try again, as students who deleted a sprite would delete
all the code within the script for that spite, which may be
a significant portion of their code. However, the correlation
coefficient and the p-value for this pairing are not significant.

After looking through code traces and going through por-
tions of students’ coding snapshots, we found that most
times when students deleted a sprite, it was a sprite with
little or no code. A student might delete a sprite they added
accidentally which will trigger the detector but by no means
be a sign of struggling. While students sometimes did delete
a sprite with significant code and try to recreate it in a dif-
ferent way, most times when students deleted a sprite, it
resembled tinkering or playing with the interface. Through
adding and deleting sprites, students may have learned more
about the concept of sprites, but made no significant change
in the overall code script.

4.2.2 Overly Idle
We found significant p-values for the correlation between the
Overly Idle detector and the occurrence of planning before
starting to program for students. Furthermore, there was a
significant correlation between students who were idler and
reporting feeling negative about looking up how to do some-
thing, spending a long time looking for an error, and not
knowing what to work on.

This suggests that students who are more overly idle, i.e.,
performing no coding actions within five minutes or more,
felt worse about having to look up how to do something,
spending a long time trying to find an error, and not know-
ing where to start. Students may be negatively self-assessing
while idle, thus feeling worse when they have looked up how
to do something (a normal programming action), or not
knowing what to work on. Additionally, this result could im-
ply that students with less developed debugging skills who
do not perform coding actions while debugging and trying
to find an error, feel worse about taking a long time to find
an error.



Table 4: Correlations between Struggle Detectors and their Corresponding Self-Assessment Moments and Project Grade
Detector Name Survey Corresponding Moment Valence Occurrence
Sprite Deletion 2. Started over or erased a significant portion of code to try again 0.3165, p=0.3162 0.1349, p=0.5818

Overly Idle

Project Total Grade N/A 0.5066, p=0.0269
4. Stopped programming to plan -0.4287, p=0.2163 0.1944, p=0.4251
7. Felt unsure where/how to start programming -0.5094, p=0.1095 -0.0103, p=0.9665
8. Looked up how to do something -0.5595, p=0.0468 -0.0879, p=0.7204
9. Spent time planning before starting to program -0.1975, p=0.5177 0.5166, p=0.0235
10. Spent a long time looking for a simple error or mistake -0.6299, p=0.0282 -0.0424, p=0.8633
13. Felt unsure about what to work on -0.6753, p=0.0226 0.2277, p=0.3485
14. Finished a feature quicker than expected -0.0782, p=0.7904 0.4293, p=0.0666

Scant Blocks
7. Felt unsure where/how to start programming 0.2472, p=0.4636 -0.0795, p=0.7462
9. Spent time planning before starting to program 0.4192, p=0.154 0.338, p=0.157
13. Felt unsure about what to work on 0, p=1 0.1364, p=0.5778

Minor Change

1. Got a simple error, like something not working as desired 0.1377, p=0.6246 0.3448, p=0.1482
3. The code was not working as expected -0.1896, p=0.5349 -0.0864, p=0.725
5. Got help from others, (e.g. partner or TA) 0.4703, p=0.1229 -0.2706, p=0.2625
8. Looked up how to do something -0.144, p=0.6387 0, p=1
10. Spent a long time looking for a simple error or mistake 0.2184, p=0.4952 0.0312, p=0.899
11. Struggled to fix errors and get the program to work 0.0389, p=0.9044 0.0312, p=0.899

Last Rows Count

2. Started over or erased a significant portion of code to try again 0.6464, p=0.0231 0.3988, p=0.0908
6. Spent a long time working on a feature 0.5455, p=0.0666 -0.0199, p=0.9354
7. Felt unsure where/how to start programming 0.6648, p=0.0256 0.1169 , p=0.6337
10. Spent a long time looking for a simple error or mistake 0.6504 , p=0.022 -0.0199, p=0.9354
12. Took longer than expected to finish a feature 0.2854, p=0.3227 0.131, p=0.5928
13. Felt unsure about what to work on 0.6257, p=0.0395 -0.0974, p=0.6916
15. Fixed an error faster than expected 0.0098, p=0.9771 -0.3701, p=0.1188

Excessive Runs
3. The code was not working as expected 0.0238, p=0.9386 0.0753, p=0.7594
11. Struggled to fix errors and get the program to work 0.2866, p=0.3665 0.1451, p=0.5535

Blocks Per Minute

* For this detector only significant correlations are mentioned.
Feeling about Programming N/A -0.5212, p=0.0221
14. Finished a feature quicker than expected -0.3052, p=0.2887 -0.5684, p=0.0111
15. Fixed an error faster than expected -0.4454, p=0.1698 -0.4874 ,p=0.0343

Aligning with our hypothesis, the Overly Idle detector has
a strong positive correlation with students who report plan-
ning before programming, suggesting that students who were
overly idle were more likely to spend time planning before
starting to program. Although at first glance, we may ex-
pect less idleness from students who plan, our impression is
that planning has increased idleness because planning itself
can increase the number of times students become idle, espe-
cially if students do planning before implementing each com-
ponent of their program. Additionally, planning can lead to
finishing the programming tasks sooner so they might have
implemented everything they had planned for and become
idle after a while.

In sum, this detector divides students into two distinct groups.
The first category is those who feel worse while struggling
with certain moments, such as not knowing what to work
on next or spending a long time looking for an error. The
second category is students who plan their code at the be-
ginning and earn higher grades. This means one portion of
the population recognized by this detector may benefit from
intervention, and the other portion may not need interven-
tion. In its current shape, this detector cannot distinguish
between two populations, but perhaps the combination of
this detector and another detector such as Last Rows Count
or a detector that would determine idleness at a specific time
period of programming could result in a more useful detector

for automated help.

4.2.3 Scant Blocks
We found no significant correlation between the Scant Blocks
detector and the moments we hypothesized that the detector
would identify. While we do not have a strong explanation
for not seeing expected correlations, we think that students
who were not placing blocks at the beginning of their pro-
gramming session could have been setting up their project,
creating variables, communicating ideas to their program-
ming partner, and doing their activities that do not have
any relationship to the moments we hypothesized.

4.2.4 Minor Change
None of the correlation values between the Minor Change
detector and the moments we hypothesized that the detec-
tor would capture were significant. This could be because
the detector only checks specific actions between a student’s
click on run button (presented as a green flag in Snap! en-
vironment). In the tagging process, we realized that minor
changes do not necessarily start and end by clicking on run
button. Therefore, an improved version of this detector may
be time-based, i.e., it captures the length of time a student
makes minor changes.



4.2.5 Last Rows Count
Out of the hypothesized scenarios we thought the detector
Last Rows Count would predict, four had a significant p-
value. There was a positive significant correlation between
the number of rows generated in the code log in the last
ten minutes of programming and students reporting that
they felt positive about starting over or erasing a significant
portion of code to try again, being unsure where/how to
start programming or what to work on, and taking longer
than expected to finish a feature. Students who had a higher
last rows count, or performed a higher number of coding
actions in the last ten minutes of the coding session, and
indicated experiencing these moments, either experienced
them before or during the last ten minutes of their coding
session.

If the student experienced one of these four moments be-
fore the last ten minutes of the coding session, the student
may have found a remedy to their struggle, indicated by
the student moving on and making good progress in the last
ten minutes of their coding session, which possibly increased
their self-efficacy, and thus made them able to see the ben-
efit of their time struggling. For example, if a student felt
unsure what to work on or how to start programming, the
indication of having a high number of coding actions at the
end of the session suggests that the student did find some-
thing to work on and was actively programming.

If a student experienced one of these four moments dur-
ing the last ten minutes of the coding session, they would
be performing a high number of coding actions, support-
ing the idea that even though a student is working through
a struggling moment, they feel better if they are not idle.
For example, if a student was trying to reimplement deleted
code in the last ten minutes of their coding session, the fact
that they were actively coding could indicate that they are
making progress and feel good about reimplementing code,
and the time spent deleting and recreating code is worth it.
Additionally, if a student mentioned they felt good when it
took longer than expected to find a simple error and they
had performed a high number of coding actions in the last
ten minutes, this could indicate that the student found the
error and started working on other parts of the program,
seeing the positive return on investing a lot of time into cor-
rectly fixing an error. If a student were to be looking for
an error in the last ten minutes and had a high Last Rows
Count, it could mean the student was performing multiple
coding actions while debugging, revealing active debugging
which may cause the student to feel better about spending a
long time looking for a simple error or mistake. We continue
to find that students performing coding actions while try-
ing to find errors often feel better about their programming
than being idle.

In addition to the aforementioned points, it is worthwhile
to investigate the other side of this metric, i.e., students
with a lower Last Rows Count may have more negative self-
assessments. Given the four survey items that were signifi-
cant, it seems Last Rows Count can distinguish students who
performed fewer coding actions at the end because they fin-
ished early from those who performed fewer coding actions
because they were stuck. Deleting a lot of code, feeling un-
sure and spending a lot of time looking for errors can relate

to feeling stuck, which would lead to a more negative self-
assessment. As a matter fact, they are also less likely to be
experienced by a high-achieving student who finishes their
work early.

4.2.6 Excessive Runs
We hypothesized that students who excessively ran the pro-
gram without making changes to the program script were
trying to understand why the program performs the way it
does, which may be a sign for students finding their code
was not working as expected or struggling to fix errors and
get the program to work [1]. However, the correlation coef-
ficient and p-values for these pairings were not significant.
After looking through code traces in the tagging process,
we found that students often run the program repetitively
without making changes simply because they are enjoying
the results of their programming, playing with what they
have programmed so far. While the Excessive Runs detec-
tor could help identify when students are trying to under-
stand the output of their program, any possible correlation
is clouded by the fact that students run their program mul-
tiple times because they find what they created fun.

4.2.7 Blocks Per Minute
We did not focus on any particular survey scenario for the
Blocks Per Minute detector. Blocks per minute is a very
general gauge of how a student may be doing in their pro-
gramming, so we found correlations and p-values for each
survey question. We found a significant negative correlation
between blocks per minute and students responding they
finished a feature or fixed an error quicker than expected.

The results indicate that a higher block per minute rate
can signify that the student did not finish the feature or fix
an error quicker than expected, or inversely, a lower block
per minute rate can indicate that the student finished the
feature or fixed an error quicker than expected. This finding
denotes that students who use fewer blocks per minute are
more intentional and thoughtful of their coding actions, and
thus may finish a programming task or fix an error faster.

4.2.8 Feeling about Programming
At the beginning of the survey that students took after each
programming session, they were asked ”How did you feel
about your programming experience/progress today?” We
tested responses to this question against all detectors to see
if any had a significant correlation and may be a good indi-
cator of how a student felt about their programming. The
only significant correlation was with the detector Blocks Per
Minute. The correlation reveals that students with a lower
Blocks Per Minute rate felt better about their programming
experience/progress in the coding session. This continues
to back the idea that students who created fewer number
of blocks were more purposeful, and thus they feel better
about their programming progress.

4.2.9 Project Total Grade
We tested if any of the detectors were a good indicator of
the total grade a student received for the project. We found
that only the overly idle detector values had a significant
positive correlation with the project’s grade, which suggests
that students who were more idle during class time received



higher grades. Once more, this reinforces the relationship
between using fewer blocks and being more thoughtful dur-
ing programming. Additionally, the students’ pace of doing
the project may be another factor that led to this result.
As found in [13], among two groups of students who spend
the same amount of time on assignments or projects, those
who distribute their workload in the time frame considered
for their project show better performance than those with
longer sessions of work.

In general, it was difficult for detectors to give an accurate
indication of the grade that a student would receive because
only data from two coding sessions that contributed to the
project, about one hour each, was collected. However, stu-
dents were allowed to complete their projects when they
were not in the classroom. In other words, if data was col-
lected for the entirety of the coding project, the detectors
might be able to better correlate with student grades for the
project.

4.2.10 Summary
From our results, we find two main themes. The first is that
students who were more active (i.e., performing more coding
actions) often felt better when they experienced certain mo-
ments in which students negatively self-assessed. In other
words, students who were more idle felt negative about a
couple of struggle moments that students who were less idle
felt positive about. In addition, we noticed that students
who performed more coding actions at the end of their ses-
sion, or were less idle, felt more positively about having ex-
perienced restarting code or being unsure how or what to
code compared to students who did fewer coding actions at
the end of their coding session.

Second, we observe that students who used fewer blocks
when programming felt better about their programming,
since they may plan more and do programming more in-
tentionally and be more thoughtful in their coding process.
Also, students who reported planning before programming
were identified as more overly idle compared to students who
did not plan beforehand. Additionally, students with a lower
blocks per minute rate more often identified finishing a fea-
ture or fixing an error faster than expected. Lastly, there was
a significant correlation between students who were overly
idle and students who received a better grade for the project.
This signifies that students who are idler or program slower
planned more and were more intentional in building their
project and thus gained a higher project grade. In a nut-
shell, students who were more active felt better when en-
countering specific struggling moments than their more idle
counterparts; however, being less active can suggest having
plans, performing better (as measured by higher grades),
and an overall better general feeling towards programming.

5. LIMITATIONS AND FUTURE WORK
This study has some limitations. First, our work is limited
by a low participation rate and its generalizability needs to
be verified. However, it showed great potential for exploring
the connection between detectable programming patterns
and moments of negative self-assessment. Second, we found
a significant number of p-values to evaluate our correlation
coefficients, but this could lead to the multiple comparison
problem. We consider addressing this issue in our future

work by using methods such as Bonferroni or Benjamini-
Hochberg correction.

Future work may consist of improving our current detectors
and creating new ones, for which a larger population would
be highly beneficial. Additionally, a think-aloud study can
provide further insight into the detectable patterns that stu-
dents produce in their code traces when encountering a strug-
gling moment, as well as the reasons behind these patterns.
Moreover, implementing these detectors in a Snap! pro-
gramming environment to provide real-time intervention is
another plan of ours which will be investigated in the future.

6. CONCLUSION
This work presented an analysis of students’ struggle mo-
ments when working on an open-ended project in a block-
based language. We investigated whether detectors could
be used to identify these struggle moments and how a stu-
dent might be feeling. We considered code traces and post-
surveys from two coding sessions with students working on
an open-ended midterm project for an introductory pro-
gramming course. Post-surveys asked students how they felt
if/when they experienced 15 specific moments in their pro-
gramming. These moments were based on what Gorson and
O’Rourke identified as moments when novice programmers
negatively self-assess [4]. Based on two prior studies [4, 1]
and experts’ suggestions, we created seven detectors to iden-
tify struggle moments in the collected coding traces of stu-
dents and matched each detector to survey responses we hy-
pothesized they would detect. We found correlation values
for how well each detector reflected specific responses from
students’ surveys. While we created some detectors such as
Overly Idle and Last Rows Count that significantly corre-
lated with some of their corresponding struggle moments,
some detectors did not have any strong correlations. We
determined and discussed why certain detectors were suc-
cessful or unsuccessful indicators of certain scenarios. Our
analysis shows that first, there are detectable patterns in
students’ coding traces that signify when students are strug-
gling regardless of the programming assignment, and second,
these patterns are associated with students’ self-reported
challenges, which paves the way for realizing why they are
struggling. We thus addressed our two research questions.
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