
Analysis of Novices’ Web-Based Help-Seeking Behavior While
Programming

James Skripchuk∗
North Carolina State University
Raleigh, North Carolina, USA

jmskripc@ncsu.edu

Neil Bennett†
North Carolina State University
Raleigh, North Carolina, USA

nzbennet@ncsu.edu

Jeffrey Zheng†
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
jez43@pitt.edu

Eric Li
North Carolina State University
Raleigh, North Carolina, USA

eli7@ncsu.edu

Thomas Price
North Carolina State University
Raleigh, North Carolina, USA

twprice@ncsu.edu

ABSTRACT
Web-based help-seeking – finding and utilizing websites to solve
a problem – is a critical skill during programming in both profes-
sional and academic settings. However, little work has explored
how students, especially novices, engage in web-based help-seeking
during programming, or what strategies they use and barriers they
face. This study begins to investigate these questions through anal-
ysis of students’ web-search behaviors during programming. We
collected think-aloud, screen recording, and log data as students
completed a challenging programming task. Students were encour-
aged to use the web for help when needed, as if in an internship.
We then qualitatively analyzed the data to address three research
questions: 1) What events motivate students to use web search? 2)
What strategies do students employ to search for, select, and learn
from web pages? 3) What barriers do students face in web search,
and when do they arise? Our results suggest that that novices use
a variety of web-search strategies – some quite unexpected – with
varying degrees of success, suggesting that web search can be a
challenging skill for novice programmers. We discuss how these
results inform future research and pedagogy focused on how to
support students in effective web search.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Information systems → Search interfaces; • Software and its
engineering;

KEYWORDS
CS education, help-seeking, web-search, novice programming
∗This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-2137100.
†Both authors contributed equally to this work and were supported by the National
Science Foundation (Award No. 1950607).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569852

ACM Reference Format:
James Skripchuk, Neil Bennett, Jeffrey Zheng, Eric Li, and Thomas Price.
2023. Analysis of Novices’ Web-Based Help-Seeking Behavior While Pro-
gramming. In Proceedings of the 54th ACM Technical Symposium on Com-
puting Science Education V. 1 (SIGCSE 2023), March 15–18, 2023, Toronto, ON,
Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.
3569852

1 INTRODUCTION
Programmers, both professionals and hobbyists, must constantly
stay up to date with new languages, frameworks, and paradigms
[15]. Programmers in industry and academia are expected to resolve
their problems and learn concepts on their own in order to stay
relevant. Students in upper level classes (such as Software Engi-
neering) may be expected to resolve errors and self-learn “trivial”
constructs of a new language (such as syntax and control struc-
tures) so that the class itself can focus on higher-level concepts. The
World Wide Web serves as the most popular repository of knowl-
edge for programming help, ranging from official documentation
to question-answer websites [26].

However, despite the need for self-learning in upper level classes
and post-graduation, there is little research in how students in
programming related degree programs use the web for help, or how
often web-based help-seeking skills are explicitly taught. Novices
encounter frequent challenges in out-of-class activities, which they
often attempt to address by searching online to learn new concepts
or to debug their code [18]. The ability to effectively seek and
integrate help - including web-based help-seeking - is a complex
metacognitive skill that must be explicitly learned and practiced
[10, 19, 20]. It is unclear how effective students’ existing web-search
strategies are, and students may be engaging in unproductive or
even harmful help-seeking behaviors, as they do with other forms
of help [16]. Understanding how, why, and when novices use the
web would inform research on whether and howweb-search should
be explicitly taught, and how to support more effective web-search
through tools and pedagogy.

Prior work on web-based help-seeking has focused almost exclu-
sively on a software engineering context. These studies focus on
how professional programmers (or upper-level students, serving
as proxies for professionals) can solve problems more efficiently,
rather than how students – especially novices – learn with web
search. This leaves open questions about how and when web search

https://doi.org/10.1145/3545945.3569852
https://doi.org/10.1145/3545945.3569852
https://doi.org/10.1145/3545945.3569852

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. James Skripchuk, Neil Bennett, Jeffrey Zheng, Eric Li, & Thomas Price

skills develop in students. A majority of web-based help-seeking
literature, both in software engineering and in computing educa-
tion, focus on coarse-grained surveys and quantitative analysis of
data such as query logs. While useful, this type of analysis does not
allow for robust and detailed insights into students’ web-search
behaviors or their perceptions of when web-search is appropriate
[11].

By contrast, in this work, we qualitatively investigate how novices
(in a second-level course) use web-based help-seeking to solve pro-
gramming challenges. Undergraduate students (𝑛 = 19) completed
a challenging programming task and were encouraged to use the
web for help when needed, as if in an internship. Our aim was to
study the role of web-based help-seeking across the entire program-
ming process from start to finish, not just during debugging. We
qualitatively analyzed think-aloud, screen recording, and log data
using thematic analysis [5] in order to understand when, why and
how students searched.

Our results suggest that that novices use a variety of web-search
strategies with varying degrees of success, suggesting that web
search can be a challenging skill for novice programmers. We dis-
cuss how these results inform future research and pedagogy. Our
findings address the following research questions:

RQ1: What events motivate students to use web search, and
when do they avoid it?

RQ2: What strategies do students employ to search for, select,
and learn from web pages?

RQ3: What barriers do students face, and when in the web search
process do they arise?

2 RELATEDWORK
2.1 Theoretical Foundation: Help-Seeking
Help-seeking - the process in which learners recognize, identify,
seek out, implement, and evaluate help - is a critical and complex
metacognitive skill across all learning domains. Nelson-Le Gall
discusses the importance of help-seeking as an instrumental skill
which promotes the dissemination of knowledge in the classroom as
well as building strong problem-solving strategies in cognitive and
academic tasks. Nelson-Le Gall then provides a theoretical model
of the process of help-seeking, which we use as a guide for our
analysis [19]. The basic model proposed consists of a student’s 1)
Awareness of need for help, 2) Decision to seek help, 3) Identification
of potential helper(s), 4) Employment of strategies to elicit help, and
5) Reactions to help-seeking attempt(s). Newman further expanded
on this by introducing concepts of Self-Regulated Learning (SRL),
and how the decision to seek help is related to the student’s self-
efficacy [20]. Traditional help-seeking models were designed within
a classroom context, which have their own challenges, such as
students being afraid or embarrassed to let others know they need
help [13, 22]. We expect to see much of the same phases in the
stated models during the web-based help-seeking process - except
in this case the "helper" is replaced by the websites

These prior help-seeking models are useful, but general. In this
work, we build on and expand prior work, focusing on a context
where students can seek help without having to interact with an-
other person (e.g., with the web or automated tutors). While study-
ing help-seeking in automated tutors, Price et al. concluded that

help-seeking might not just be in reaction to student difficulty, but
also a valid problem solving strategy [21]. Work is needed to elabo-
rate on the specific help-seeking strategies and barriers that arise
in web search, which likely differs from classroom-specific sources
of help, like instructors, TAs, and peers.

2.2 Professional Search Behavior
The focus on web-search in software engineering and HCI research
has focused on topics such as the frequency of their web search
[17], the content of their searches [26], and how they use code
they find [2, 25]. Brandt et al. note that programmers engage in
just-in-time learning of new skills during programming [4]. Pro-
grammers will often use the web as a substitute for memorization,
use it to clarify implementation details, and even learn entirely
new concepts. Hora details what professional software developers
are searching for and what they find. The study finds characteris-
tic traits of the queries used by professionals, such as using short
queries, beginning queries with keywords such as the language
name, and omitting functional words [12]. However, there is little
research on how programmers learn and cultivate these web-based
help-seeking skills and behaviors. Studying the web-based help-
seeking behaviors of novice programmers can help us understand
how and when these skills develop. While this research provides
insight on the help-seeking behaviors of experienced and profes-
sional programmers, we aim to investigate if novices also engage
in the same methodologies or struggles.

2.3 Novice Search Behavior
There is little prior work on how novices use the web for help-
seeking. Li et al. investigated the differences between novices’ and
experts’ web-based debugging behaviors, and they found that pro-
fessional developers are more likely to find relevant results than
novices [14]. Chatterjee et al. instructed novice software engineers
to highlight parts of online examples they found relevant, and noted
that they tended to highlight code examples more often than text
[6]. However, these two studies limited themselves to StackOver-
flow.com and not the entirety of the web, and even though it is a
popular source among students, Doebling et al. found that they had
trouble navigating and filtering the sheer amount of information
on the site [7]. Muller et al. studied novices’ help-seeking behavior
on homework, and noticed that students made use of the web in
addition to official resources such as class resources and Piazza,
and may be an integral portion of problem-solving process [18].
Al-Sammarraie showed that novice-expert pairs lead to novices
constructing more helpful search queries than they would alone [1].
While helpful, very little of this prior work investigates the behav-
iors of novices throughout their entire programming process, not
just debugging. We wish to study what behaviors students engage
in outside of a traditional classroom or homework setting, where
they do not have access to previous resources.

3 METHODOLOGY
Our goal in this work was to study the behaviors that novices
engage in while using web-based help-seeking. In order to achieve
this, we performed a think-aloud study where students solved a

Analysis of Novices’ Web-Based Help-Seeking Behavior While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

programming task that was challenging but appropriate for their
skill level.

3.1 Population & Course Context
We recruited students for this IRB-approved study from within a
R1 university on the east coast of the U.S. We restricted our pop-
ulation to students who were currently enrolled in (but had not
completed) the university’s 200-level (CS2) course. The CS2 course
is a continuation of the CS1 course, and both courses use Java as
their programming language. CS2 students were chosen because
they were still early in their CS program (i.e. novices), but were
also familiar with the fundamentals of programming and were be-
ginning to learn more complex programming patterns and APIs,
which might benefit from online search for documentation and
examples. The CS2 course covered Object-oriented programming,
Input/Output (I/O), introduction to the software development life-
cycle, recursion, and linear data structures. This course, as with
a majority of the university’s other CS courses, had restrictions
on usage of external sources such as the web. For homeworks and
projects, the only external resources students were allowed to use
was the official Java API documentation. The use of any other ex-
ternal resources and help websites (even if cited) would be counted
as an academic integrity violation if discovered. We discuss the
implications of this in Section 5.

At the beginning of the semester, recruitment materials were
sent out to the CS2 course instructor in addition to a researcher
visiting the class and explaining the study. For completion of the
study, subjects were given a $30 Amazon gift card. In total, 19 un-
dergraduates signed up for and completed the study. These included
CS majors (13/19), CS-intended (not yet accepted into the program;
3/19) and other STEM majors currently taking the class for the CS
minor (3/19). They noted that their first programming experience
was in: Middle School (2/19), High School (8/19), or Undergraduate
(8/19)1. We did not collect other demographic information.

3.2 Procedure
Each study session was performed remotely over Zoom. Partic-
ipants were allotted 60 minutes for the entire study. First, the
researcher first spent 5 minutes overviewing the study consent
and data collection procedures. Then, subjects were given approx-
imately 10 minutes for an the interview portion on their usage
and perceptions of web-search, and approximately 40 minutes for
the programming portion. Whether or not the student finished
the programming portion, the last 5 minutes was allotted to the
researcher asking questions about behaviors that the researcher
noticed during the programming portion. For the programming
portion, participants were required to use a researcher-hosted VS
Code server which logged programming events. They were also
required to download a custom Chrome web-extension in order to
track their search behaviors for the duration of the session. All 19
studies were conducted by a single researcher. Due to space con-
straints, in this paper we focus only on the programming portion
of our study.

1We did not manage to get first exposure to programming for one student.

3.3 Programming Think-Aloud Study
We chose the Rainfall Problem as the basis for our study due to its
precedent in the literature and how it requires core programming
concepts [23]. In order to make the problem more difficult and to
encourage search, the problem was modified to require program-
ming APIs and skills (some of which students had recently learned
in class), specifically: reading and writing CSV files, rounding, and
using Dates. The programming task was scaffolded into 5 distinct
steps, each indicated by comments in an otherwise empty Java file:
1) Extract the rainfall data from a column in a CSV, 2) Calculate the
“Rainfall Average”, 3) Round the Rainfall Average to two decimal
places, 4) Get the current date, 5) Append both the current date and
the formatted Rainfall Average to a different CSV file.

File I/O was added not only because it was a historically difficult
topic that was covered in the CS2 class, but also because the web
provides different approaches to read a file in Java, which can high-
light how students choose a solution when multiple approaches are
given. Rounding and getting formatted dates are not explicitly cov-
ered in the CS2 course, so this step would likely require searching
online for some sort of help or documentation.

The programming context was framed as if it were an internship.
Students were prompted that they were “working for a meteorologist
analyzing rainfall patterns in their area.” To discourage students
from struggling with the problem by themselves and to encourage
help-seeking, we stated that the “quarterly report deadline is coming
up, so your boss wants this program completed as soon as possible.”
Students were explicitly told that they were “allowed to use the
Internet and any resources you find on the Internet to help you solve
your problem.” and that “you don’t have to wait until you’re stuck;
you can look for help even before you start programming.” These
comments were made in an effort to remind the student that they
should not think of this as a class setting where external resources
are discouraged. As part of the standard think-aloud study protocol,
students were instructed to “continuously talk about your thought
process and what you’re doing”, and that if they were not speaking
for a long amount of time (1 minute), they would be prompted by
the researcher to begin thinking-aloud more. In order avoid periods
of unproductive non help-seeking behavior, the researcher would
occasionally prompt students in addition to the standard think-
aloud prompting. If students explicitly stated they were stuck and
did not know how to continue, or were engaging in unproductive
behaviors without using the web (such as not thinking-aloud while
makingminimal edits) formore than 5minutes, theywere prompted
by the researcher that “as a reminder, you can use the web for help.”

3.4 Analysis
For this paper, we only focus on the programming portion and not
the interview portion. After we collected and cleaned the data, we
then proceeded with our analysis. We used the thematic analysis
framework [5] to identify students’ help-seeking triggers, strategies
and barriers, similar to prior computing education work [8, 24].

First, three researchers (including the one who facilitated the
interviews), familiarized themselves with the data by watching
replays of 2 studies together, discussing what behaviors they were
seeing, and writing down high-level notes on behaviors they saw.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. James Skripchuk, Neil Bennett, Jeffrey Zheng, Eric Li, & Thomas Price

The second step was to generate our initial codebook of behav-
iors. Thematic analysis requires fixed and unambiguous "units" to
apply codes on. For interviews and transcripts, the units are usu-
ally utterances or line-by-line; however, since we were focused on
recordings of programming behaviors and web-search, we defined
our "units" with respect to these behaviors. Therefore, we used our
log data to unambiguously segment each replay into chunks of time,
and created a new segment each time a student compiled, made a
web-search, or visited a page. In each segment of time, a researcher
could then apply one or more codes detailing the behaviors they
noticed within that segment. Due to our logging structure, creating
segmentations in this manner is consistent, reproducible, and easily
automated. Using their notes, the three researchers then performed
open coding on the previous 2 replays and 3 new replays, ideating
and apply codes to the segmentation, creating a final codebook
with 34 codes in total.

Third, the researchers then grouped these codes into 8 distinct
themes based on when and where these codes appeared within the
data. After this step, two researchers then individually coded the
remaining 14 replays. After each replay, the two researchers then
met together and resolved differences and disputes on whether a
code was present in a specific segment or not, before deciding upon
a final coded segmentation for each replay in the closed coding
process. The researchers then reviewed their themes, and made
alignments with traditional help-seeking models, before defining
them in detail. Across 19 students, 661 individual segments were
coded, some segments having 0 codes while the maximum having
7 codes. In total, 663 codes were applied, with a median of 1 code
per segment.

4 RESULTS & DISCUSSION
We now present some of our themes and codes. For space concerns,
we do not discuss all of our codes and highlight codes (shown in
bold) throughout this section. For each code, we report the number
of students where the code appeared at least once. The codes and
themes discussed here are chosen due their high frequency within
our dataset (i.e. above the median frequency), with lower frequency
codes included for contrast or to elaborate on unexpected behaviors.
We provide a link to our resources containing all of the codes
we encountered, as well as their frequency within the dataset2.
Provided quotes may be edited for brevity, keeping all content but
removing false starts and filler words. We detail our results and
providing implications for both pedagogy and further research.

4.1 RQ1: Events That Lead To Search
4.1.1 First Search. We wanted to know what events motivated
students to use web search, particularly, when and why they decide
to make their first search during the programming process. We
first look at when students made their first search. At the start
of the programming portion, 6 students immediately searched for
information on file I/O before writing a single line of code. In 3
of these pre-programming searches, students stated they had an
approach already in mind but needed to look up the syntax for
how to program them, using queries such as “fileinputstream

2https://docs.google.com/document/d/15iJStjBYqqJAvYfXkXXvnDs_h9tcUS2nFWz_
5zSmtzs

java”, and “scanner java documentation”. P7, after rereading
the problem statement, immediately opened up their search engine
and typed in “java scanner input” while saying "Right now I’m
looking up Scanner to refresh myself on it." The other 3 queried a
more general problem statement, such as “java read file”, and
“how to read a csv file java”. P9, after reading the prompt,
stated that "I’m not great at remembering how you can read data."
and began to type “how to read data from a csv file in
java.”.

The remaining 13 students started writing without any searches
beforehand, while using a given approach from memory (such as
Scanner, BufferedReader, or FileInputStream). After program-
ming, but before making any compilations, 6 of these 13 students
reached a point where they made a search, all refreshing themselves
on the approach they were currently working towards. P17 was
writing code to initialize an array, paused mid-line, and cautiously
said "I’m thinking this is how I do this? I’m trying to remember how to
write a list of integers.", before opening their browser and searching
to confirm their code was correct. After programming, the remain-
ing 7 of these 13 students did their first search after running their
program encountering some sort of error (either compiler or logical
error). Somewould search for generic documentation pages (such as
“scanner api”) to help them, while others with a defined compiler
error would use the error text to to help resolve their issues.
Discussion: We see that 12/19 students made their first search
before compiling and running their code. These results suggest
that students use search not only for debugging errors, as has been
the focus of prior work [6, 14], but also to help select a solution
approach, or refresh their memory of how to implement it. This
aligns with Brandts’ work on experts using the web for learning,
clarifying, and remembering [4], as well as Price’s work on help-
seeking as problem solving [21]. Pedagogy or tools that support
web search might encourage students to differentiate between these
distinct help needs, since different online resources (e.g. tutorial vs
documentation) may serve each better.

4.1.2 Responding to Errors. When students encountered errors,
such as syntax or logical errors, they often debugged the error
with web search. However, students generally responded in one of
two distinct ways. Before they searched, students would engage in
Debugging Behaviors (10/19) at least once. This included things
such as mentally stepping through a loop and tracing variables
(which we could observe due to the think-aloud protocol). The
remaining 9 students would turn towards search and look for help
without engaging in these debugging practices, suggesting that
students might be looking for help without fully understanding and
engaging with their erroneous code. P12 encountered a scoping
error with a variable in a try/catch, briefly skimmed their entire
file without looking at their initializations, and stated “I’m not sure
how I can fix the access of a variable so I’m gonna look it up.”

Students also differed in how they used error messages. Some
students would Directly Search for the Compiler Error Text
(4/19) at least once, which involved copying and pasting (or retyp-
ing) the exact error without modification, often to mixed results.
P13 wrote code in order to iterate through a file, but added an extra
bracket in their if statement without noticing. This resulted in the
error: “java.lang.error unresolved compilation problem”,

https://docs.google.com/document/d/15iJStjBYqqJAvYfXkXXvnDs_h9tcUS2nFWz_5zSmtzs
https://docs.google.com/document/d/15iJStjBYqqJAvYfXkXXvnDs_h9tcUS2nFWz_5zSmtzs

Analysis of Novices’ Web-Based Help-Seeking Behavior While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

which they searched directly, leading to a StackOverflow page de-
tailing irrelevant information pertaining to build paths. The student
expressed confusion and went back to investigating and comment-
ing out parts of their code, before realizing the extra bracket and
deleting it.

Some students used their Compiler Error to Inform Their
Search Behavior (10/19), which involved reading the error and
then reasoning about why it could possibly occur, and then translat-
ing that into a more general query, rather than copying it directly.
For example P15 was trying to compare an Object-type and a String-
type variable and encountered the error “error bad operand
types for binary operator ’==’”, the student then thought
about it, stated that they realized they needed to cast an object, and
searched “how to cast an object in an array to a double.”

Discussion: Prior work shows that students often have difficulty
understanding compiler error messages, and benefit from enhanced
messages with better explanations [3]. Our results suggest that web
search may serve a similar function for some students, especially
those who can interpret the errors first, but that it is does not always
answer students’ questions.

4.2 RQ2: How Do Students Use What They Find?
4.2.1 Selecting a Help Resource. We found that students oftenmove
quickly to select a help resource. After entering a search query, a
large majority of students, at least once, Clicked The First Result
Without Scanning (18/19). This code applied to a median of 3
times per student. Students would enter a search query and then
click the first link within a second without any obvious indication
of reading or highlighting other results of the search query. In an
extreme version of this we noticed that P15 would type in a query,
and then immediately move their cursor to where the first link would
be before the search results even loaded so that they could instantly
click on the first result. When asked if this was a common behavior
for them, they stated “I think a lot of times like whatever Google
recommends first, I usually check that first.”

After clicking into a page a large majority of students, at least
once, Looked Directly to Code (18/19). Here, they would load a
page, and then immediately scroll down to a code block, ignoring
any sort of prose along the way before reading the code example.
Contrast this to how some student, at least once, Read Prose First
(10/19), and other students Read The Surrounding Text Around
Code Examples (10/19). When asked about the above behaviors,
students expressed their preference in seeing and reading code
examples quickly. P17 stated, while highlighting example code in a
website description: “I’m a visual person, what I’m looking for is this
right here. It gives me grounds on the kind of setup I need to have.”

4.2.2 Reliance On Search Engine Extracted Information. We ana-
lyzed how Google search specifically influenced search behavior,
as Google has large majority of the global search engine market
share. In our pre-interview, all 19 students said that their preferred
search engine was Google.

In addition to actual query results, Google also returns extracted
information from websites, and we noticed that a majority of stu-
dents made use of Search Engine Extracted Information (15/19)
at least once. When a query is made, Google sometimes returns
a “Featured Snippet” in an effort to provide answers to searchers

without requiring them to load a new page. These can include quick
definitions, extracted paragraphs, or even step by step instructions.
Sometimes, featured snippets would return code as well, however,
this code would sometimes be malformatted or cut off due to the
size of the Featured Snippet area. Featured snippets often provided
quick answers for simple questions that students make. When look-
ing up Java import syntax and found the result in a featured snippet,
P14 stated that they were "making sure I was searching for exactly
what I wanted in simple terms in hope that [the featured snippet]
would pop up right away. It’s something that’s out there on a lot of
websites, so I know that it was something that would pop up fairly
easily." Google also returns a “People Also Ask” that showcases
other queries that people commonly search for, which some used as
basis for further search queries, or clicked on the pages provided.

4.2.3 Image Search. In our study, a small amount of students Used
Image Search (2/19) to help search for code examples. While few,
thosewho did use image search used it as theirmain searchmodality
through the programming session, preferring to use it over the
main text results page. This behavior was unexpected to all the
researchers involved, so we provide a small case study using P6 to
exemplify this modality of search.

During their programming session, P6 searched "how to read
a file java." They then went to the images tab, which showed
various screenshots of Java code. They then clicked on one of the
results, which expanded the image to a large enough size so they
could read it. They looked at the image, before clicking on a different
image and began to read it more closely, finally deciding implement
the approach detailed in the screenshot. Not once did the student
actually load the website the image was from; all the work was done
from within the Google Images page.

When asked on this behavior, they mentioned that going to
images maximizes the number of code examples they can see at
once, and expressed that clicking links on Google results to look
for examples was more time consuming. P6 stated that “Sometimes
it’s easier to find the skeleton of the method that I want in images,
so I usually go there first. Every time I’ve tried looking up for things,
sometimes it’s easier to find what I’m looking for in the images then in
the websites where I have to scroll through everything. In the images
I can just find it there, I don’t have to read text.” P10 stated that “I
guess I just see a lot of examples right off the bat. I don’t always do
that, but it’s just a good way to see a lot."

Discussion: Li et al. found that when searching within StackOver-
flow, novices usually clicked the first link while experts took a more
measured approach [14]. We see that this behavior extends to us-
ing the entirety of the web: a majority of the students in our study
wanted code examples quickly, immediately scrolling to code within
website or relying on extracted information or image search. In
some cases, this behavior may be a sign of expedient help-seeking
[19], in which students use help resources to resolve a problem
quickly, without making an effort to learn. It is important to note
that we did encourage students to solve problems quickly without
an explicit focus on learning, and in some cases the “expedient”
search results did resolve minor issues well. Compared to experts,
this suggests that students may not be careful in their search for
information on the web, and possibly need pedagogy or guidance
on a more nuanced approach to searching.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. James Skripchuk, Neil Bennett, Jeffrey Zheng, Eric Li, & Thomas Price

4.3 What Barriers Do Students Face?
4.3.1 Reservations On Searching. As stated in our Methodology, it
was made explicit to the students that they should search online
when they are stuck. However, some students Needed Explicit
Prompting (7/19) after struggling for an extended period of time
that they could use the online resource. Within our population, we
identified two main causes for students self-restricting their own
usage of the internet: Self-Reliance andWeb Inexperience.

Self-Reliant students stated that they liked to figure out things
on their own – even self-identifying as "stubborn" in some cases.
Some even stated that this behavior may not be desirable in a non-
educational setting where tasks need to get done.When asked about
their behavior, P12 stated that “When I see something new, I don’t
like to immediately see other people’s implementation, but there is
a breaking point.” While they did not enjoy searching, self-reliant
students were able to make use of the web for help when prompted.

This contrasts with theWeb Inexperienced students. These stu-
dents would express need for help, but even when prompted that
they could use the Internet, would express that it’s something they
do not do often. P18 would only limit themselves to the Java API for
searching, as they were taught in class. Near the end of the study
session, they were spending time unproductively trying to turn
a String into a Double and stated that “If this was a problem that
I ran into in class I would ask a TA for help because I’m not really
sure how to do this.”, and stopped, not sure what to do next. When
prompted that they could use the entirety of the Internet, not just
the Java API, they would still only use the Java API. When asked,
they stated “I’m just used to how I program in class where I don’t just
search things up.”

4.3.2 Faulty Integrations and Compounding Errors. When integrat-
ing code examples, more students preferred to Retype Examples
(14/19) instead of Copy and Pasting (7/19) from a website. Stu-
dents often implemented code they find online without re-checking
if their implementation was correct, occasionally leading to them
running their program and encountering errors, not realizing that
it stems from the code they’ve integrated in the past. Some students,
seeing their current implementation wasn’t working, would see
a different way of solving the problem (such as using a different
API) online andChange Their Approach (11/19), sometimes more
than once. Some students would even search to debug code they
have integrated incorrectly, using new code they find and end up in
a spiral of Compounding Faulty Integrations (4/19). We take
P11 as a case study for these behaviors, as they exemplify many of
the failure modes that we saw across students.

P11 first searched "how to read a csv file in java” before
writing any code. They then found an article3 detailing multiple
ways to read a CSV file, and found a solution using Scanner which
they were familiar with. They then switched back to the IDE, and be-
gan to retype the implementation. However, while retyping, instead
of typing "new Scanner(new File(FILENAME))" they mistakenly
typed "new Scanner(FILENAME)", and then copied the rest of the
example correctly.

After writing and compiling further non-working code, not real-
izing their mistake, they flipped back to the web page they retyped

3https://www.javatpoint.com/how-to-read-csv-file-in-java

from and performed a high-level scan, still not noticing their mis-
take. They then found another website4, which gave an example for
a BufferedReader approach, stated that “I’m not sure what this is”,
went back to the first article, scrolled down, and saw a simpler ver-
sion of the BufferedReader approach. They then stated “Instead
of this approach, I’ll probably set up a BufferedReader.”, marking
their first approach change. They then managed to read the file in;
however they struggled with exceptions. As they were typing im-
port statements, they mistakenly attributed missing imports to why
their previous code wasn’t working, and made a second approach
change back Scanner. Once realizing that wasn’t their issue, they
then switched approaches a third time back to the BufferedReader
approach, and then realized they were missing exceptions.
Discussion: Much like other forms of help-seeking, students have
reservations on searching, and that implicit instruction on how and
when to search might be useful for students with these reserva-
tions. For those who do make use of search, sometimes they will
change their approach when they are stuck, even if their code is
almost correct. Research has shown that retyping code examples
can beneficial for learning [9], however these behaviors suggest
that retyping also allows for possible mistakes in implementation,
which can cause a student to not recognize the source of an error.
Pedagogy or tools could be designed to help avoid these mistakes.

5 THREATS TO VALIDITY & FUTUREWORK
One limitation is the narrow scope of the problem to achieve results
in a reasonable time, which could not capture the complexity of help-
seeking for something larger like a project. Another limitation is
that a researcher was observing the students the entire time in order
to make sure they were thinking aloud, this could possibly put stress
upon the student and make them perform differently than they
would be if they were programming alone. There may have been a
self-selection bias within our study, where those who are willing
to sign up for an participate in an extra-curricular study may not
be representative of every type of student that needs help. Finally,
while not a practice that is unique to just our university, the active
discouragement of using the web for homework and assignments
could also have influenced the behaviors and perceptions of web-
search for students. However, due to the lack of qualitative research
in this area, we believe that our limitations are valid and will be
helpful for further studies investigating any of these behaviors in
more detail.

We found students searched thought the entire process, using
the web to both debug their programs as well as a problem solving
method. Can pedagogy or tools be constructed to better help with these
distinct help needs? We found students focused on viewing code
examples quickly, sometimes using unexpected methods such as
extracted information or image search. Are students learning when
engaging in this expedient help-seeking, and do these methods provide
the same quality of content as web pages? Finally, we found students
have reservations on searching, as well as misjudge the success of
their own integrations. What factors could lead to these reservations,
and how can we design pedagogy to ensure that students do not make
mistakes while integrating code they find online?

4https://www.java67.com/2015/08/how-to-load-data-from-csv-file-in-java.html

Analysis of Novices’ Web-Based Help-Seeking Behavior While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] Mareh Fakhir Al-Sammarraie. 2017. An Empirical Investigation of Collaborative

Web Search Tool on Novice’s Query Behavior. (2017).
[2] Gina R Bai, Joshua Kayani, and Kathryn T Stolee. 2020. How graduate computing

students search when using an unfamiliar programming language. In Proceedings
of the 28th International Conference on Program Comprehension. 160–171.

[3] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210.

[4] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
2009. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1589–1598.

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[6] Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding help with pro-
gramming errors: An exploratory study of novice software engineers’ focus in
stack overflow posts. Journal of Systems and Software 159 (2020), 110454.

[7] Augie Doebling and Ayaan M. Kazerouni. 2021. Patterns of Academic Help-
Seeking in Undergraduate Computing Students. In Proceedings of the 21st Koli
Calling International Conference on Computing Education Research (Joensuu, Fin-
land) (Koli Calling ’21). Association for Computing Machinery, New York, NY,
USA, Article 13, 10 pages. https://doi.org/10.1145/3488042.3488052

[8] Yihuan Dong, Samiha Marwan, Veronica Catete, Thomas Price, and Tiffany
Barnes. 2019. Defining tinkering behavior in open-ended block-based program-
ming assignments. In Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education. 1204–1210.

[9] Adam M Gaweda, Collin F Lynch, Nathan Seamon, Gabriel Silva de Oliveira,
and Alay Deliwa. 2020. Typing exercises as interactive worked examples for
deliberate practice in cs courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference. 105–113.

[10] Souvick Ghosh, Manasa Rath, and Chirag Shah. 2018. Searching as Learning:
Exploring Search Behavior and Learning Outcomes in Learning-Related Tasks. In
Proceedings of the 2018 Conference on Human Information Interaction q& Retrieval
(New Brunswick, NJ, USA) (CHIIR ’18). Association for Computing Machinery,
New York, NY, USA, 22–31. https://doi.org/10.1145/3176349.3176386

[11] Carrie Grimes, Diane Tang, and Daniel Russell. 2007. Query logs alone are not
enough. (2007).

[12] Andre Hora. 2021. Googling for software development: what developers search
for and what they find. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 317–328.

[13] Stuart A Karabenick. 2004. Perceived achievement goal structure and college
student help seeking. Journal of educational psychology 96, 3 (2004), 569.

[14] Annie Li, Madeline Endres, and Westley Weimer. 2022. Debugging with Stack
Overflow: Web Search Behavior in Novice and Expert Programmers. (2022).

[15] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What help
do developers seek, when and how?. In 2013 20th working conference on reverse
engineering (WCRE). IEEE, 142–151.

[16] Samiha Marwan, Anay Dombe, and Thomas W Price. 2020. Unproductive help-
seeking in programming: What it is and how to address it. In Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer Science Education.
54–60.

[17] André N Meyer, Laura E Barton, Gail C Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. The work life of developers: Activities, switches and per-
ceived productivity. IEEE Transactions on Software Engineering 43, 12 (2017),
1178–1193.

[18] Silvia Muller, Monica Babes-Vroman, Mary Emenike, and Thu D Nguyen. 2020.
Exploring Novice Programmers’ Homework Practices: Initial Observations of In-
formation Seeking Behaviors. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 333–339.

[19] Sharon Nelson-Le Gall. 1981. Help-seeking: An understudied problem-solving
skill in children. Developmental review 1, 3 (1981), 224–246.

[20] Richard S Newman. 1994. Adaptive help seeking: A strategy of self-regulated
learning. (1994).

[21] Thomas W. Price, Zhongxiu Liu, Veronica Cateté, and Tiffany Barnes. 2017. Fac-
tors Influencing Students’ Help-Seeking Behavior While Programming with
Human and Computer Tutors. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (Tacoma, Washington, USA) (ICER
’17). Association for Computing Machinery, New York, NY, USA, 127–135.
https://doi.org/10.1145/3105726.3106179

[22] Allison M Ryan, Paul R Pintrich, and Carol Midgley. 2001. Avoiding seeking help
in the classroom: Who and why? Educational Psychology Review 13, 2 (2001),
93–114.

[23] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. 87–96.

[24] Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra Mil-
liken, Chris Martens, Tiffany Barnes, and Thomas Price. 2021. Novices’ learning
barriers when using code examples in open-ended programming. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1. 394–400.

[25] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How do
developers utilize source code from stack overflow? Empirical Software Engineer-
ing 24, 2 (2019), 637–673.

[26] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22, 6 (2017), 3149–3185.

https://doi.org/10.1145/3488042.3488052
https://doi.org/10.1145/3176349.3176386
https://doi.org/10.1145/3105726.3106179

	Abstract
	1 Introduction
	2 Related Work
	2.1 Theoretical Foundation: Help-Seeking
	2.2 Professional Search Behavior
	2.3 Novice Search Behavior

	3 Methodology
	3.1 Population & Course Context
	3.2 Procedure
	3.3 Programming Think-Aloud Study
	3.4 Analysis

	4 Results & Discussion
	4.1 RQ1: Events That Lead To Search
	4.2 RQ2: How Do Students Use What They Find?
	4.3 What Barriers Do Students Face?

	5 Threats to Validity & Future Work
	References

