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ABSTRACT
Understanding students’ misconceptions is important for effective
teaching and assessment. However, discovering such misconcep-
tions manually can be time-consuming and laborious. Automated
misconception discovery can address these challenges by highlight-
ing patterns in student data, which domain experts can then inspect
to identify misconceptions. In this work, we present a novel method
for the semi-automated discovery of problem-specific misconcep-
tions from students’ program code in computing courses, using a
state-of-the-art code classificationmodel.We trained themodel on a
block-based programming dataset and used the learned embedding
to cluster incorrect student submissions. We found these clusters
correspond to specific misconceptions about the problem andwould
not have been easily discovered with existing approaches. We also
discuss potential applications of our approach and how these mis-
conceptions inform domain-specific insights into students’ learning
processes.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Applied computing→ Education.
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1 INTRODUCTION
An accurate understanding of students’ misconceptions on a given
problem is important for effective teaching and assessment of stu-
dent knowledge. Researchers can improve the performance of stu-
dent models by explicitly representing misconceptions [23]. Stu-
dents can benefit from feedback on specific misconceptions, espe-
cially if those misconceptions are detected automatically (e.g. in
[26]). Moreover, instructors can improve their lectures by explicitly
addressing misconceptions, and better assess student knowledge by
incorporating them into assignment rubrics. However, all of these
applications first require researchers to discover what misconcep-
tions exist in a given domain, or on a specific problem. For example,
while instructors may already have rubrics to assess performance,
these rubrics’ items may focus on qualities of the products cre-
ated by students, rather than detecting specific misconceptions
in student knowledge. Discovering such misconceptions is time-
consuming and laborious, requiring experts to analyze traces of
student work [20, 32] or interviews [5]. Such high cost of analysis
makes it difficult to discover these problem-specific misconceptions.

Semi-automated misconception discovery can address these chal-
lenges by highlighting patterns in student data, which domain
experts then inspect to identify misconceptions. However, exist-
ing discovery methods have focused on simple association rules
[11, 16], rather than state-of-the-art deep learning methods. Deep
learning methods have already been used to accurately assess stu-
dent performance on complex tasks (e.g. essay writing [21]). In
doing so, they also learn to represent students’ submissions as vec-
tors, which makes it easier to visualize and cluster submissions and
find meaningful patterns that correspond to students’ performance.
This suggests that deep learning methodsmay be able to go beyond
assessment and support the discovery of misconceptions.

In this work, we present a novel method for the semi-automated
discovery of problem-specific misconceptions from students’ pro-
gram code in computing courses, using a state-of-the-art, deep learn-
ing code classification model called code2vec [2]. Our approach
trains code2vec to predict students’ success on a given problem,
and then domain experts can use the visualizations produced us-
ing code2vec, along with students’ scores on a grading rubric, to
quickly identify clusters of students who made similar mistakes on
the problem.We applied this technique to one block-based program-
ming problem from an introductory CS course for non-majors. We
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find these clusters: 1) Correspond to specific misconceptions about
the problem, which could be addressed with targeted feedback, and
2) Identify groups of students’ misconceptions that would not have
been discovered from the rubric alone, or with standard code clus-
tering approaches. Additionally, while code2vec has proven highly
accurate at classifying code on large datasets, in this paper we in-
vestigate its effectiveness at the novel task of assessing student code
on a much smaller dataset. We discuss potential applications of our
approach (e.g. refining rubrics, informing instruction and feedback),
and how these misconceptions inform domain-specific insights into
students’ learning processes in a computing course. The primary
contributions of this work are: (1) a novel semi-automated method
for identifying problem-specific misconceptions (2) an evaluation
of this method on one assignment in a introductory computer sci-
ence (CS0) course, revealing insights into students’ specific learning
processes and challenges, and (3) an evaluation of code2vec for au-
tomated code assessment, showing that it outperforms baseline
models.

2 RELATEDWORK
Misconceptions andMisconceptionDiscovery: Misconceptions
in computing education refer to an incorrect understanding of a
concept or a set of concepts, which lead to making mistakes in writ-
ing or reading programs [34]. They are commonplace among novice
learners but are many times invisible to experts and instructors
[33] – a phenomenon explained in part by the “expert blind spot”
[28]. Understanding misconceptions helps instructors to be more in-
formed, and provides raw material for student modeling [22]. Prior
work has explored ways to automatically detect students’ miscon-
ceptions [26], however, these detectors required experts to label a
training set with the presence of misconceptions to train the model,
which only works if we already know what misconceptions to look
for. In CS education, misconceptions have been elicited through
laborious manual analysis of students’ program code [29] or inter-
views [18]. In addition, manual construction of “bug libraries” can
be a difficult and time consuming task for experts [4]. Nevertheless,
such manual analysis, especially on a sequence of program snap-
shots, has been shown to provide more insightful information on
students’ misconceptions. For example, Davies et al. manually anal-
ysed students’ programming trace data to discover misconceptions,
and found that trace data revealed more knowledge gaps than what
has been shown in their final submissions [6]. Other work focused
on data-driven discovery of misconceptions. For example, Guzman
et al. [16] used association rule mining to semi-automatically elicit
misconceptions from multiple-choice questions in a CS practice
test, and then allowed instructors to filter and verify meaningful
misconceptions. However, such semi-automated detection of mis-
conceptions also requires domain experts to analyze their rules to
label them as constraints, and is only focused on closed-endedmulti-
ple choice questions (MCQs), rather than open-ended programming
problems.

Automated Programming Code Assessment: Our approach
builds on automated assessment technologies to detect misconcep-
tions. Automated assessments help reduce instructor burden and
enhance students’ learning. Much of the work on automated assess-
ment using learning algorithms has been implemented in complex

domains, such as open-ended learning environments [31] and essay
grading [21]. However, most of the work in CS education domain
has been limited to using test-cases for assessment (e.g. in [9]),
rather than adapting these more advanced learning approaches.
These test-driven assessment frameworks run a student’s code with
hand-authored inputs, which requires additional instructor author-
ing effort and is difficult to apply to some problems (e.g. those with
complex input, or graphical output). Some recent work has used
machine learning algorithms to predict students’ learning outcomes
by extracting more information for generalized and more complex
problems [3, 25]. Building on this work, we leverage the code2vec
model [2] to extract structural information for automated program
assessment, which in turn forms the basis for our misconception
discovery approach.

Assessment isn’t just about accuracy, it’s also about giving the
student actionable feedback. Rubrics help us do this. Automated
approaches have also been used to automatically extract rubrics.
Clear rubrics provide interpretable justification of why students
succeeded or failed an assessment [7]. Prior work has explored auto-
matic discovery of rubrics. For example, Zhi et al. [35] and Diana et
al. [7] automatically generated rubrics from students’ submissions
by identifying common features of correct solutions. Dimopoulos
et al. [8] created a Learning Management Systems plugin that en-
hanced rubrics with additional info about students’ interaction data
(e.g. forum activity). However, none of these methods address how
to improve rubrics by highlighting specific student misconceptions.

Code Analysis and Representation: Recent advances in deep
learningmodels for code classification [2] suggest their potential for
applications in education. One problem that these models solve is
that neither code nor text representations can be directly translated
into vector representations to be processed by machine learning
algorithms. One way that natural language research solves this chal-
lenge is by using a trainable embeddingmatrix to represent different
text contents [27]. Recent approaches represent the unstructured
program code in a structured format that models can use as input.
Among them, the most straightforward approach is to represent
code as a sequence of one-hot encoders, which does not capture
any of the structural information in code [1]. In CS education, Piech
et al. [30] used a neural network to learn student code embeddings
– an abstract vector representation of code – to identify which stu-
dents would benefit from specific instructor feedback. However,
this model considers only the output of code and ignores important
structural information. They build their model based on the input
and outputs of the code to extract the code embeddings, which does
not leverage the important structural information for code itself. In
this paper we focus on a particular approach, code2vec [2], which
proposed expressive representations extracted from abstract syntax
trees (ASTs), which greatly outperform prior work on code classifi-
cation tasks. Recent work suggests that the embeddings produced
by this approach may be particularly useful for finding patterns in
student code [3]. In our work, we discover student misconceptions
on a similar embedding matrix to represent code contents.

3 METHOD
The code2vec model learns a code embedding during training (high-
lighted in Figure 1), which extracts relevant structural information
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Figure 1: Code2vec model. The input is represented as a set
of paths (b0, ...,br ), and the model outputs the grade distri-
butionp. We extract the circled E as the embeddings for mis-
conception discovery. The embeddings are passed through
the attention layer and used for generating the prediction
of students’ scores on the rubric.

from students’ code with respect to their success on the problem.
Using this embedding, we can transform any student’s code submis-
sion into a vector, which can be compared to other students’ vectors.
We hypothesize that this vector representation may be useful for
identifying groups of students with similar misconceptions, more
so than overall syntactic similarity. Embeddings are similarly used
in NLP tasks [27] such as sentiment classification or translation
tasks. However, this vector space is sparse and large, and student
submissions are embedded non-linearly in the space. We therefore
leverage t-SNE [24] to perform non-linear dimensionality reduc-
tion, which allows us to perform clustering and visualization more
effectively.

We perform misconception discovery only on students who un-
successfully completed a given assignment. If a multi-item rubric is
available, we can use this to make misconception discovery more
effective, by discovering misconceptions among students who were
unsuccessful at each individual rubric item. Since a misconception
may lead students to make a specific error on an assignment, we
hypothesize that students who performed poorly on a given rubric
are more likely to share a misconception. To discover these mis-
conception groups, we use the DBSCAN algorithm [12] to cluster
unsuccessful students into groups, which we hypothesize corre-
spond tomisconceptions. Not all students will have amisconception
who fail a rubric item, so we use DBSCAN which can detect and
remove noise point. The result is a set of clusters, which an expert
can view and interpret to identify a common misconception among
the submissions in each cluster.

4 EXPERIMENT
We set out to answer the following research questions: RQ1: How
accurately can a state-of-the-art code classification method assess
students’ performance on a programming exercise?RQ2: How well
does the code embedding from such a model capture meaningful
similarities among students submissions, and do these reflect shared
misconceptions?

4.1 Dataset and Rubric
Our data come from an entry-level (CS0) computer science class
for non-majors at a research university, spanning four consecutive
semesters (Spring 2016 through Fall 2017). Students programmed
in Snap, a block-based programming environment, designed for
novices [14]. For this experiment, we chose to analyze one assign-
ment from the course that required the use of loops, variables
and procedures to draw a spiral shape, which proved particularly
difficult for students (as it has a lowest average score among all
assignments). We collected 207 submissions, which had each been
graded using a rubric with 6 pass/fail items:

• Procedure with 1 Parameter: Create a procedure to draw
the shape with one parameter that controls its size.

• Pen Down: Use the “pen down” block in the procedure to
start drawing.

• Variable Init: Initialize a variable and use it to control the
length of each side of the shape.

• Repeat Rotations: Use a “repeat” block (i.e. a loop) to draw
a spiral shape with the given size.

• Forward +Turn: Draw a square-like shape using the “forward”
and “turn” blocks inside a loop.

• Variable Increment: Increment the side length variable
after each iteration.

4.2 Creating and Validating Code2Vec
Embeddings

Our goal is to use code2vec to create a meaningful embedding,
which can be used to detect misconceptions. For consistency, we
trained the code2vec model to predict whether a student got all
rubric items correct (which 38% of students did). For a given training
set, this yielded a single embedding, which we hypothesized would
reflect learned code patterns indicating success on each rubric item.
However, this embedding would only be meaningful if the model
itself can accurately predict student success.

To evaluate the model’s performance, we compared code2vec
to three baseline models: 1) a naive majority class basline, 2) a
support vector machine (SVM) (with a linear kernel, which outper-
formed Gaussian and Polynomial kernels), and 3) a fully connected
neural network (NN). To convert student’s code into a vector of
numeric features to use in the baseline models, we applied term
frequency–inverse document frequency (TF-IDF) to each student’s
code. This is similar to the Bag of Words approach used in prior
learning analytics work [3] for code feature extraction. When evalu-
ating all models’ performance, we split the Snap dataset into an 80%
training dataset, and a 20% testing dataset. To ensure the robust-
ness of our results in lieu of cross-validation, we re-sampled and
re-trained the model 50 times and report the average performance.

Hyperparameters: In training both neural network models, we
set the maximum training epochs as 10, 000, with the patience of
early stopping set to 400. We used a manual grid-search to select
the learning rate (0.1 to 10−6), number of linear layer dimensions
(100, 200, 300) and batch size (32, 64, 128, full set), and found little
difference across a hyper-parameters range. We thus selected the
following parameters for both neural network models. The learning
rate was set to 0.0002, linear layer dimensions were set to 100, and
the batch size was set to the full set. The weights were learned
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Table 1: Grading accuracy, precision, recall, area under ROC
curve (AUC), F-1 Score for code2vec.

Metric Majority SVM NN code2vec
Accuracy 63.95% 69.67% 71.71% 75.66%
Precision 0 61.68% 62.74% 67.06%
Recall 0 42.21% 58.30% 72.66%
AUC 0.5 0.650 0.689 0.814
F1 0 0.460 0.593 0.6895

during training using the Adam optimizer [19] for all these three
models. On code2vec, we used 100-dimensional vectors for both
nodes and paths. We applied the default values from the code2vec
model, since changing these numbers within a range did not mean-
ingfully change the results. We padded the number of paths to be
the same length (100) over the student code dataset.

4.3 Clustering Incorrect Submissions to Feed
Misconception Detection

We randomly selected a single code2vec model from the 50 runs and
extracted its embeddings from the input of the attention layer, as
shown in Fig. 1. When detecting misconceptions, we applied t-SNE
to visualize the entire dataset of incorrect submissions (training and
validation), since our intended use case is post hoc analytics, not
predicting the misconceptions of future students. We used DBSCAN
to cluster incorrect submissions for each rubric item individually
(leading to 6 sets of clusters). For DBSCAN, we set the minimum
number cluster points (minpts) at 3, assuming that this is the small-
est number of submissions an instructor or researcher might be
interested in examining. We used the DMDBSCAN method [10] to
determine an optimal ϵ , and set ϵ = 11. For each cluster, we calcu-
lated the average distance between each item in each cluster, and
normalized this number by the average distance of all points to the
overall centroid. We selected up to 4 of the densest clusters for each
rubric item to inspect (those with the smallest mean intra-cluster
distance), which are presented in Section 5.2.

5 RESULTS
5.1 Model Validation: Predicting Student

Performance
Table 1 shows the mean performance of all models for predict-
ing students’ performance on the task (all correct or not). The
code2vec model outperforms all baselines on all metrics. Specifi-
cally, code2vec model achieves 0.125 higher AUC, and 0.096 higher
F1 score than the best among other baseline models, which is a sub-
stantial improvement. These results address RQ1, suggesting that
code2vec can achieve improved assessment accuracy by extracting
more meaningful features from students’ code. With an accuracy
of 75.7%, this semi-automated assessment certainly cannot replace
manual grading, but could reasonably assist instructors by provid-
ing a list of likely correct submissions to be verified, or by providing
formative feedback to students, warning them before submitting
a potentially erroneous solution. More importantly, these results
show that the structural information, encoded in code2vec embed-
ding, is a useful predictor of student performance, more than the

count information given by TF-IDF features used in the baselines.
This suggests that our use of the embedding to detect meaningful
patterns among student submissions is a reasonable approach.

5.2 Embedding Interpretation
We introduce the interpretations of embeddings to address RQ2
in this subsection, and include a case study in the next subsection.
Table 2 shows the 4 densest clusters discovered for each rubric item
(or as many as were discovered). Recall that the primary goal of
our proposed method is to discover meaningful clusters (groups
of students) who are demonstrating a similar misconception and
would benefit from similar feedback. To verify this, one author, who
is an instructor for the course, inspected each cluster and evalu-
ated whether a shared misconception was present in the cluster, in
which all (or nearly all) students failed the rubric item due to the
same misconception. This process led to the discovery of 7 distinct
misconceptions (shown in Table 2), which involved viewing 63
distinct submissions (about half of the incorrect submission). The
author then created a short definition for each misconception.

Of the 17 clusters identified, only 4 had no consistent pattern
or misconception (no label). This suggests that our approach fre-
quently identified meaningful groups of students. To validate the
original misconception labels, 2 other authors familiar with the class
inspected the clusters and marked each submission as matching or
not matching the misconception, resolving any disagreements. We
report then number of “outliers” in each cluster which did not have
the misconception. Many clusters had 0 outliers, and none had more
than 1, further suggesting that clusters have internal consistency.
One misconception (Move/Turn) showed up across almost every
rubric item, often represented by similar or identical clusters of
students. In the future, this redundancy could be avoided by ex-
cluding clusters that have high overlap with previously discovered
clusters. To illustrate the types of misconceptions discovered by
our approach, we describe 3 of the misconceptions discovered for
one rubric item in detail below.

5.3 Case Study: “Procedure with One
Parameter" Rubric Item

The first rubric item (referred to as R0) requires students to create
a procedure with one parameter that holds the number of rotations
of the spiral-square shape. This rubric was originally designed to
test students’ ability to create procedures with parameters, which
demonstrates an understanding of abstraction. While the rubric
item was designed to assess a single student skill, we found that
students failed the item for a wide variety of reasons, as illustrated
by 3 distinct misconceptions:

The green cluster in Figure 2 contains 11 students who shared a
misconception that iteration should be accomplished by duplicating
codemultiple times, (e.g. 5 pairs of “move” and “turn” blocks), rather
than correctly repeating iterations with a loop. This misconception
has little to do with R0 or with procedures (some students used a
procedure; others did not), but it caused students to fail R0, since
they could not correctly use the parameter without a loop. Unlike
the other R0 clusters, these students needed basic feedback on a
prerequisite programming concept (iteration), and would likely not
benefit from feedback on procedures or parameters. These students
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Table 2: Top-4 clusters Embedding Distance (ED) and Tree Edit Distance (TED), and the Interpretations of the clusters

Rubric Name and Description Size (# of students) Outliers TED ED

R0 - Procedure with 1 Param.

Fixed Shape 7 0 0.2912 0.1884
Large Move/Turn 11 1 1.9551 0.1657
Not testing a custom block 3 0 0.2868 0.0813
Rotations not from Input 3 0 0.4666 0.0788

R1 - Initialize Variable
Large Move/Turn 10 0 1.9599 0.1680
Medium Move/Turn 4 0 0.5730 0.1254
Fail to initialize 3 1 0.6041 0.0890

R2 - Move and Turn Large Move/Turn 6 1 2.0339 0.1377
Medium Move/Turn 4 1 0.4207 0.1515

R3 - Repeat

Repeat sides not rotations 6 0 0.4566 0.1357
Mixed incorrect repeat 11 0 0.4719 0.2494
Mixed incorrect repeat 4 0 0.9894 0.1342
Fixed shape 4 1 0.0891 0.0428

R4 - Pen down Mixed incorrect custom block 5 0 0.5115 0.1436
Mixed incorrect custom block 4 0 0.5449 0.1265

R5 - Increment Large Move/turn 9 0 1.9781 0.1680
Medium Move/turn 5 1 0.5947 0.1481

Figure 2: Code Embedding vi-
sualized clusters from the Pro-
cedure with 1 Input rubric
item. We colored three clus-
ters Rotations not from input
(Brown), Fixed Shape (Orange)
and Move/Turn (Green) for dis-
cussion in Subsection 5.3.

Figure 3: Pseudocode examples from student code dataset for the three clustered circled
in Fig.2. Code related with misconceptions are highlighted with specific colors.

all failed other rubric items as well, and this misconception shows
up consistently across rubric items.

The orange cluster in Figure 2 consists of 8 students who created
a loop that repeats a fixed number of times, rather than using the
procedure’s parameter to determines the number of rotations. This
suggests amisconception about using loopswith parameters. Unlike
the previous cluster, students in this cluster knew how to create a
loop, but they likely had a misconception that loops always iterated
a fixed number of times, which was reflected in their inability to
use a parameter or even a variable in the “repeat” block. Despite
this similarity, there was also variety within the cluster: two of
these students used a procedure without a parameter, while six did
not create a procedure, and some used variables while others did

not. Despite these syntactic differences, these submissions were
positioned very close together in the embedding.

The brown cluster in Figure 2 consists of three students, where
all of them used a local variable to determine the number of rotations,
instead of the procedure’s parameter. In particular, two students
created a procedure without parameters, then used an ask block to
ask the user for an input and finally store it in a different created
variable: “Rotations”. The third student did not create a procedure,
and created a variable: “Rotations” and initialized it with a static
value. Unlike the previous clusters, all students demonstrated an
understanding that the size of the shape should be dynamic, using a
variable in the repeat block. However, they shared a misconception
about how a procedure parameter can be used to vary this value.
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This could also be explained by a misunderstanding about the
assignment requiring such a parameter, but in either case, students
would benefit from targeted feedback on this misconception.

5.4 Are Clusters Distinct and Non-obvious?
Our proposed method is only useful if it detects clusters of student
code that could not easily be otherwise identified. For example,
if the clusters simply correspond to getting specific items in the
rubric incorrect, there would be no need for a new approach to
discover them. However, we found that the individual rubric scores
varied widely within each cluster, without consistent patterns of
which rubric items were gotten correct or incorrect (beyond the
initial rubric item used to discover the cluster, which all students
got incorrect).

Another possibility is that the clusters simply have similar ASTs,
allowing existing code clustering methods to detect them. However,
investigation of the code snapshots within each cluster revealed
wide variety in the size and syntactic structure. To verify this, we
calculated the average tree edit distance between each item in each
cluster, and normalized this number by the average distance to the
overall centroid. We compared this normalized cluster tree edit
distance (TED) with the normalized embedding distance (ED), as
shown in Table 2. We found the embedding distance is always much
smaller than the tree edit distance, showing that the clustered sub-
missions were relatively much closer together in the embedded
space (compared to non-clustered submission), than in TED space,
suggesting they would not be easily detected by traditional cluster-
ing methods. This shows the the embedding captures some aspects
of code similarity which not apparent by simply comparing ASTs.

6 DISCUSSION
Implications for Research and Teaching: We envision a num-
ber of potential applications of our approach to help researchers
and instructors to address students’ misconceptions. Feedback prop-
agation:We found that students in the clusters we discovered would
have benefited from targeted feedback that addressed their miscon-
ception. One application of our approach is in feedback propagation
[17], where an instructor can write a single piece of feedback and
send it to all students who might benefit. Moreover, our clusters
would not have been discovered through traditional code cluster-
ing methods used in prior work (e.g. canonicalization [15]). Semi-
automated feedback: Many of the misconceptions we discovered
would be best addressed with formative feedback, as the student
works. Since the patterns we discovered were relatively straight-
forward, one could imagine building a system to detect them au-
tomatically and offer appropriate immediate feedback early in a
students’ work. In our investigation, we found that our clusters
were not exhaustive, and did not include all students who shared
the common misconception, just a representative subset. However,
prior work suggests that, once a misconception is identified, models
can be trained to accurately identify it automatically [26]. Rubric
refinement:We found that a single rubric item can easily correspond
to numerous, distinct challenges faced by students, as described in
Section 5.3. Instructors and researchers may want to assess student
knowledge in a more granular way, and our approach could help
develop rubrics that capture the full range of students’ ability and

knowledge. For example, it might be best to split the rubric item
R0 into multiple items, or convert it from a binary pass/fail item to
having scale values representing the various degrees of success.

Domain-Specific Implications for Computing Education:
Another application of misconception discovery is to inform our
understanding of a learning domain, and here we reflect on the
implications of our findings for computing education. In this paper,
we focused on R0, which assessed students’ ability to use a proce-
dure parameter to vary the size of the shape they were drawing
(determined by the number of iterations in a loop). While this rubric
item was designed to assess a single concept (use of a parameter),
our method discovered three clusters representing distinct barri-
ers that students faced, requiring different remediation. The first
cluster included students who had not figured out how to use a
loop to draw the shape, suggesting the need for basic help on pro-
gramming concepts needed in the assignment. The second cluster
included students who were able to use a loop to draw the shape,
but they did not understand that the size of the shape should vary;
they used a static value instead. These students may need help
understanding the assignment requirements, or which property of
the shape should be parameterized. The third cluster of students
did understand that the size of the shape should vary, but used a
variable instead of the procedure parameter for this, suggesting
their need to understand the use of parameters.

These results suggest implications for how to teach the lesson
preceding this assignment, and how to teach procedure parameters
in general. For our classroom, the instructor may want to do a more
thorough review of loops and variables before the assignment (e.g.
to help students in the first/green cluster). In general, our results
suggest that students may struggle to use abstraction in the absence
of a clear set of steps for creating a procedure with parameters.
The instructor may want to teach students steps that address each
of the barriers we identified, e.g.: 1) create a non-parameterized
version of the procedure, which is the same every time, and make
sure it works; 2) identify what aspect(s) of the procedure should
be able to vary and create corresponding parameter(s); 3) replace
the corresponding literal values in your code with the appropriate
parameters. This aligns with a similar series of steps presented
by the popular textbook on “How to Design Programs” to teach
abstraction [13].

Limitations: This study is exploratory and has important limi-
tations. First, we focused on one assignment from one course. This
allowed us to discuss the misconceptions we discovered in depth,
but as a result, it is not clear how well our results will generalize
to other assignments. Second, our approach – and our evaluation –
relied on the interpretations of experts to describe and label miscon-
ceptions, making the process semi-automatic. However, we argue
this interpretation is a necessary part of making use of any mis-
conceptions to verify their meaningfulness, and in our evaluation
we used multiple raters to verify cluster meaning. Third, our ap-
proach yield some clusters that have no clear interpretation, and
some duplicates, suggesting the need for future work to refine the
process. Lastly, the discovered clusters are not exhaustive, meaning
not all students who make a given misconception show up in the
cluster. However, as discussed in Section 6, the clusters can still be
useful to researchers and instructors, prompting changes to course
structure that can benefit students not captured by the clusters.
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7 CONCLUSION
In this paper, we presented a method for discovering student mis-
conceptions semi-automatically using code assessment. We found
that the code2vec model achieves a better semi-automated assess-
ment performance than baseline models, showing that useful code
structural information is learned in the model for the embeddings.
We then examined if the embeddings could be used to discover
misconceptions, and found that the embeddings generated clusters
corresponding to meaningful and distinct misconceptions. From
a case study on three clusters, we found that they are novel, con-
sistent, and cannot be discovered by traditional code clustering
methods, e.g. using tree edit distance. These results suggest that
deep learning approaches have exciting potential to not only assess
code, but help in the identification of learners’ misconceptions.
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