
How, when, and why do novices struggle in programming?
Exploring the experiences and perceptions of common
programming moments in block-based environments

Heidi Reichert, Ally Limke, Benyamin T. Tabarsi, Thomas Price, Chris Martens, Tiffany
Barnes

North Carolina State University
{hreiche, anlimke, btaghiz, twprice, crmarten, tmbarnes}@ncsu.edu

ABSTRACT
Positive student self-efficacy has been linked to undergradu-
ate computer science students’ improved retention rates and
success in the major, with self-efficacy in programming being
particularly important. To improve poor self-efficacy in pro-
gramming, especially for novices, we must understand the
moments that affect students’ self-perceived programming
ability. Although these moments have been identified in
text-based programming environments, they have not been
studied for relevance in block-based programming environ-
ments. This study, based on a modified replication of Gor-
son and O’Rourke’s 2020 survey concerning the self-efficacy
of introductory computer science students, sought to dis-
cover what negative and positive self-assessment moments
CS students learning in a block-based environment encoun-
tered and how they perceived them. Over the course of two
class sessions, students in an introductory, non-major CS
course worked on a final project in a pair-programming en-
vironment. At the end of each class, students were prompted
to take a brief survey about their programming experience
that day - how satisfied they were with their progress, how
they expected they would do, which struggle and success
moments they experienced, and whether they felt these mo-
ments happened more frequently to them than to other stu-
dents in the course. We hypothesized that students who felt
that they had challenging moments more often than other
students, or whose experiences did not meet their own ex-
pectations, would have more negative experiences. Strug-
gle moments across the board were found to be relatively
uncommon, with students often rating themselves as strug-
gling and succeeding similarly to their peers. Results sug-
gest that block-based programming environments may help
mitigate some of the pitfalls of traditional introductory pro-
gramming.

Keywords
CS0, block-based programming, novice programming, self-

efficacy, computer science education

1. INTRODUCTION
Computer science is a rapidly growing field; according to the
U.S. Bureau of labor statistics, “[e]mployment in computer
and information technology occupations is projected to grow
13 percent from 2020 to 2030, faster than the average for all
occupations” [13]. Supply has not kept up with demand for
CS positions, and there is currently a shortage of skilled
workers to fulfill these positions [4]. To satisfy this future
need for computer scientists and those with critical thinking
skills in the discipline, we must ensure that computer sci-
ence students at the undergraduate level are retained and
supported throughout their educational experiences.

Although many factors, including gender and previous ex-
posure to CS and mathematics, influence intent to join and
remain in the major, one of note is a student’s self-confidence
and perception of their own ability [14]. Self-efficacy, as orig-
inally defined by Bandura, is“people’s beliefs about their ca-
pabilities to produce designated levels of performance that
exercise influence over events that affect their lives” [2]. Self-
efficacy is influenced by a number of features, but, partic-
ularly in a programming context, an individual’s percep-
tion of both positive and negative moments in relation to
themselves is critical. Prior research has shown that self-
assessment is connected to self-efficacy and overall motiva-
tion [10]. CS students frequently self-assess at lower lev-
els than their actual abilities [5]. Students often interpret
normal programming moments as indicative of poor perfor-
mance; this can result in poor self-efficacy and may drive
individuals out of the discipline [7]. This effect can be even
stronger for historically marginalized students; for instance,
women tend to self-assess at more negative rates than men
[9]. Research has found that positive experiences in a stu-
dent’s first CS course are strongly correlated with intentions
to remain in the field [3]; therefore, introductory CS is of
critical importance in the continuation of the major.

Early intervention to improve student confidence and mo-
tivation may improve retention rates and performance. At
minimum, improving a student’s self-efficacy can improve
their overall programming experience and their attitudes to-
ward computer science as a discipline. Given the prevalence
of anxiety and depression in CS students, the promotion of
positive experiences may be of benefit to students and their

H. Reichert, A. Limke, B. T. Tabarsi, T. Price, C. Martens and T. Barnes. How, when, and why do novices struggle in programming? Exploring the experiences and perceptions of common programming moments in block-based environments. In B. Akram, T. Price, Y. Shi, P. Brusilovsky and S. Hsiao, editors, Proceedings of the 6th Educational Data Mining in Computer Science Education (CSEDM) Workshop, pages 66–74, Durham, United Kingdom, July 2022.
© 2022 Copyright is held by the author(s). This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.



success in the field [11].

While efforts have been made to study the moments that in-
fluence self-efficacy in computer science for novice program-
mers, to our knowledge, this has not been studied in block-
based programming environments, through which many novice
programmers are taught to program in high school and early
college. These efforts have also studied exclusively CS-majors
and more advanced learners (i.e. CS1, rather than CS0).
Likewise, earlier studies have concerned hypothetical under-
standings of these self-assessment moments; to our under-
standing, none have focused on how students perceive their
own programming efforts immediately after completing a
programming session. Finally, to our knowledge, none of
these studies have analyzed how students from historically
marginalized communities (e.g. women, students of color)
self-assess compared to their peers in block-based program-
ming environments. Previous work has considered block-
based programming and self-efficacy. Gunbatar and Kar-
alar demonstrated in 2018 that programming in the block-
based platform mBlock improved middle school student self-
efficacy perceptions and attitudes toward programming [8].
Although not concerned with improving self-efficacy, Durak,
Yilmaz and Yilmaz in 2019 found that, for middle school
students who programmed robotic activities, there was a
positive relationship between computational thinking, self-
efficacy, and reflective thinking [6]. However, this work has
not considered specific moments during programming that
affect self-efficacy or self-assessment.

Of particular consideration to this paper is the 2020 work of
Gorson and O’Rourke, who found 13 specific moments dur-
ing which students negatively self-assess. These moments,
listed in full in Table 2, include forgetting syntax, not un-
derstanding simple errors, and making typos while program-
ming. These moments were assessed through surveys ad-
ministered to three CS1 classes at three midwestern Ameri-
can universities. These surveys asked students to look back
on previous experiences with moments rather than assessing
students freshly immediately after programming; while these
delayed recollections, which have the benefit of memory and
reflection, are relevant and useful, they do leave us lacking an
understanding of how students may perceive these moments
in real-time. Likewise, these surveys were also overwhelm-
ingly negative; most questions had binary answers related
to whether a specific moment made somebody “bad at pro-
gramming,” and neither neutral nor positive moments were
mentioned. These non-negative statements may be of use in
more fully capturing students’ senses of self-efficacy.

These moments also focused on text-based programming
languages. In these languages, such errors as forgetting syn-
tax or making typos are common; however, in block-based
programming languages, these moments may not exist in
that form. A student may forget syntax while programming
in Python, for instance, but that would be impossible in
Snap!; however, a student may forget where a specific block
is in the programming environment, which offers a parallel
to such a moment.

Thus, this work aimed to use the proposed Gorson and
O’Rourke moments and assess their relevance and applica-
bility in block-based programming environments. It is be-

lieved that the collection of data on these moments and the
development and use of tools to catch when they happen
can be used to introduce positive feedback in real-time to
struggling students, thus potentially reducing negative self-
efficacy by stopping it before it can occur.

2. STUDY DESIGN AND METHODS
This study aimed to answer the following research questions
regarding novice (CS0) programmers:

RQ1: How do a student’s perceptions of their experiences,
henceforth referred to as “experience”, compared against the
experiences of other students relate to how positively students
perceived their experience?

RQ2: Are there differences in how students from histor-
ically marginalized communities self-assess their program-
ming abilities compared to students from non-historically-
marginalized communities in a block-based programming course?

RQ3: What programming events correlate with how students
feel about their positive and negative programming experi-
ences in a block-based programming environment?

The answers to these questions were intended to improve
novice student programming, particularly in block-based pro-
gramming environments. Experience was considered to be
an important measure, as positive experiences were consid-
ered to be more likely to encourage student retention and
attitude toward the field. A survey was developed to answer
these questions; unlike previous surveys, this survey was de-
signed to be administered immediately post-programming
so as to better capture students’ subjective experiences and
more realistically understand how these moments occur for
students.

2.1 Survey Design
All surveys administered were explicitly based on the work
of Gorson and O’Rourke; however, modifications were made
to fit the block-based environment and class context.

The original study focused only on moments of struggle, re-
sulting in an overall negatively-leaning survey experience.
While negative self-assessment is a critical component of
self-efficacy, positive self-assessment is also relevant to how
students perceive their own programming abilities. To coun-
terbalance this negative bias for our initial survey, as well as
to more accurately and completely capture how students felt
post-programming, two moments were included that were
not present in the original survey; these two moments con-
cerned how quickly a student finished a task and fixed an
error in relation to their initial expectations.

The original survey was also thirteen pages. This allowed
for a more in-depth survey, but it was repetitive, with sev-
eral questions being almost identically-phrased. The longer
form was considered too time-consuming for a short, post-
programming survey. We chose to first reduce redundan-
cies in questions, as many questions were near-identical re-
peats of other questions (presumably for the purposes of
validation). We also removed vignette-style questions; these
were hypothetical scenarios in which students determined
whether hypothetical programmers experiencing the listed



Original self-assessment moment Modified self-assessment moment
Getting a simple error Getting a simple error, like something not working as desired
Starting over Starting over or erasing a significant portion of code to try again
Not understanding an error message The code not working as expected
Stopping programming to plan Stopping programming to plan
Getting help from others Getting help from others (e.g. partner or TA)
Spending a long time on a problem Spending a long time working on a feature
Not knowing how to start Feeling unsure where/how to start programming
Using resources to look up syntax Looking up how to do something
Spending time planning at the beginning Spending time planning before starting to program
Spending a long time looking for a simple error Spending a long time looking for a simple error or mistake
Struggling to fix errors Struggling to fix errors and get the program to work
Not able to finish in time expected Taking longer than expected to finish a feature
Does not understand the problem statement Feeling unsure about what to work on
(No equivalent) Finishing a feature quicker than expected
(No equivalent) Fixing an error faster than expected

Table 1: Self-assessment moments: original and adjusted

programming moments were bad programmers. These cuts
reduced the survey-taking experience from approximately 10
minutes (as found by the researchers taking the test) to ap-
proximately 3 minutes, which was more acceptable to the
course instructor.

The original Gorson study focused on three CS1 classes using
text-based programming languages, with a specific emphasis
on Python. Three of the 13 struggle moments directly repre-
sented problems that were solely present in text-based pro-
gramming environments; for instance, syntax-based errors
and typo-based errors would not usually occur in a block-
based environment. These moments were transformed for
our study with the goal of capturing the original frustration
moment while also being reasonable to find in a block-based
environment. Typographical issues were generally replaced,
as well as error-specific moments (i.e., receiving an error
message); respectively, these were transformed into ques-
tions on being unable to find specific blocks and not un-
derstanding why a program did not run. Certain moments,
such as “Does not understand the problem statement,” were
changed to better reflect the context of the open-ended as-
signment (here, this moment was changed to“Feeling unsure
about what to work on,” as there was no problem statement
in our study). The extra context was also provided as appro-
priate to moments; while the original Gorson and O’Rourke
study provided vignettes that offered additional context to
what each moment meant, we wanted to reduce bulk while
maintaining clarity for participating students. This resulted
in the assessed moments having extra context in their names;
for instance, this can be seen in the change from “Getting
help from others” to “Getting help from others (e.g. partner
or TA).”Table 1 lists all of the modifications that were made
for each moment.

Students were asked how their overall programming expe-
rience/progress went on a Likert scale, in which 1 repre-
sented “Very dissatisfied” and 6 represented “Very satisfied.”
Students were then specifically asked to think about their
programming experience from the day and choose from four
options assessing each of the 15 moments; the options were
“Didn’t happen,”“I felt bad / frustrated,”“It was normal and

Demographic Category Count Percentage

Gender
Female 7 35%
Male 11 55%
Prefer not to say 2 10%

Race

Asian 5 25%
Black or African American 2 10%
Mixed 2 10%
White 9 45%
Prefer not say 2 10%

Table 2: Demographic information of participants

I felt OK,” and “It was good / useful or helped me learn.”
These options were included to give students more than a
binary choice of whether a moment has or has not happened,
as well as to give students the opportunity to demonstrate
more than simply negative emotions toward a moment; for
instance, a student could indicate pride at having overcome
an obstacle, or neutrality toward a moment. Likewise, stu-
dents were asked to note for each self-assessment moment
whether they believed other students in their class experi-
enced that moment “Less than me,” “The same as me,” or
“More than me” – in other words, students were asked to
compare themselves to their peers.

Students were finally asked for their demographic informa-
tion. This was done to determine whether the existence of
specific programming moments affected a student’s percep-
tion of programming overall, as well as to determine whether
students from historically marginalized communities in com-
puter science experienced moments significantly differently
from their non-marginalized peers.

2.2 Survey Administration
The population space was composed of 45 undergraduate
students enrolled in an introductory computer science course
for non-computer science majors at an American public uni-
versity. This population was chosen due to its being an in-
troductory class with novice programmers; as students were
not computer science majors, most students had little com-
puter science knowledge as the class occurred in the second



(Spring) semester of the 2021-2022 school year. The course
utilized a hybrid model, in which students could attend class
in-person or online.

We have an approved IRB protocol to survey students about
their experience with the course, and only consenting stu-
dents were included in the study. The initial surveys were
administered over the course of two class periods. During
each 75-minute class, students worked on their projects in
group sizes ranging from one to three. Each project was
open-ended and intended as a capstone project to demon-
strate knowledge of block-based programming in Snap! Af-
ter completing this program, students ceased to work in
Snap! and began to work in another programming envi-
ronment.

Ten minutes before each class period ended, the students re-
ceived a popup within their programming environments with
a request to complete the survey. Upon clicking the popup,
students were directed to the survey in Qualtrics. In total,
20 consenting students participated over the course of both
surveys; of these students, 11 participated in only the first
round of surveys, and 9 participated in both rounds of sur-
veys. Surveys from the same student collected over multiple
days were used as separate surveys; in total, this resulted
in 29 usable surveys to analyze. Demographic information
from the 20 students is available in Table 2.

3. ANALYSIS AND RESULTS
3.1 Analysis
The primary dependent variable analyzed during this study
was student programming satisfaction; this was, as men-
tioned under study design, a number from one to six that re-
flected how a student felt about their programming progress
and experience of the day, ranging from very dissatisfied to
very satisfied.

Due to the nature of the questions asked, the survey ques-
tions were analyzed using different methods. As stated ear-
lier, each student was asked to rank 15 moments on whether
each of the moments had happened and, if so, how they felt
about each one; students were also asked to share how of-
ten they believed each moment happened to their classmates
in comparison to themselves. Because of this, two different
statistical methods were predominantly used. The experi-
ence of moments were split along two lines: whether the
moments did or did not happen and, if the moment did hap-
pen, whether the moment was negative, neutral, or positive.
All moments were designated as either having happened (1)
or not happened (0); logistic regression was conducted with
moment occurrence as the independent variable and pro-
gramming satisfaction as the dependent variable. Moments
that did happen had their perceived emotions translated to
a number (with 1 being negative, 2 being neutral, and 3
being positive), and linear regression was conducted with
moment-related emotion as the independent variable and
programming satisfaction as the dependent variable.

The occurrence of self-assessment moments, along with the
perception of these moments, were correlated against stu-
dent programming satisfaction. Gender and race also were
correlated against student programming satisfaction and each
moment’s occurrence. Finally, the responses of pairs of indi-

viduals, when available, were correlated against each other,
along with responses from individuals who completed the
survey twice (i.e. on each of the two days in which surveys
were administered). Spearman’s rank-order correlation was
chosen due to our analysis of ranked variables. These corre-
lation coefficients, in conjunction with their p-values, were
also used to assess statistical significance.

For all analyses, the typical p-value of 0.05 was used to assess
for statistical significance. Corrections were not done for
multiple tests.

3.2 Results
3.2.1 RQ1
We had hypothesized that students who perceived them-
selves as encountering errorsmore frequently than their peers
would also have a more negative perception of their pro-
gramming experience. When assessing student comparison
data in relation to experience, no moments of statistical
significance were detected. In other words, no meaningful
correlation was found between how students perceive other
students struggling or succeeding and their feelings regard-
ing their own programming experiences of the day. While
initially surprising, there are a few potential explanations
for these findings. Most students, as seen in Figures 1 and
2, stated that they believed other students overwhelmingly
perceived the same moments as they had; closer inspection
of survey results revealed that in nine surveys students ex-
clusively chose “Same as me” to this question for all 15 mo-
ments. It is potentially the case that students truly do feel
that their peers are performing equivalently to themselves.
It is more likely, however, that students were attempting to
quickly complete the survey so as to leave class earlier.

Figure 1: Histogram of self-assessment/comparison of nega-
tive moments, and whether students felt others encountered
the same moment less than, equal to, or more than them;
percentage out of 29 surveys.

3.2.2 RQ2
Gender had some influence on how students self-assessed;
non-male students (i.e., students who identified as female
or did not provide a gender) were less likely to feel certain
about where/how to start programming (p-value 0.03 via chi
squared test); however, as stated earlier, results were not
corrected for, and multiple comparisons were made, and are



Self-assessment moment Correlation coefficient p-value
Feeling unsure where/how to start programming 0.4576 0.01256
Spending a long time looking for a simple error or mistake 0.4922 0.00668
Feeling unsure about what to work on 0.4238 0.02194
Finishing a feature quicker than expected -0.5765 0.00106
Fixing an error faster than expected -0.5394 0.00253

Table 3: Significant correlations between self-assessment moments and negative programming experiences

Figure 2: Histogram of self-assessment/comparison of posi-
tive moments, and whether students felt others encountered
the same moment less than, equal to, or more than them;
percentage out of 29 surveys.

consequently most useful for generating hypotheses for eval-
uation in future work. No statistically significant correla-
tions were found regarding race in any capacity; in other
words, a student’s reported race had no effect on how stu-
dents compared themselves to their peers. This is likely due
to small sample sizes.

3.2.3 RQ3
Students broadly felt that most moments that they encoun-
tered felt normal or okay. The majority of students had neu-
tral or positive programming experiences, as seen in Figure
3. No statistically significant results were found through ei-
ther the conducted logistic or linear regressions, as seen in
tables 3 and 4 located in the appendix. Statistically signif-
icant results regarding self-assessment moments were found
only during our correlation analysis, and specifically mo-
ments that were split between did or did not happen, rather
than split among negative, neutral, and positive perceptions.
This is likely due to the fact that, while all moments either
did or did not happen, only moments that happened could
provide meaningful data for linear regression. Correlation
coefficients and p-values are located in Table 3.

When students felt unsure of where/how to start program-
ming, they were more likely to have a negative programming
experience; this is also the case with spending a long time
looking for a simple error or mistake, as well as for feeling
unsure about what to work on. When students had finished
a feature quicker than expected, as well as when they fixed
an error faster than expected, they were more likely to have
a more positive programming experience. Two of the nega-
tive moments, feeling unsure where/how to start program-

Figure 3: Histogram of each combined moment and students’
feelings about them; percentage out of 29 surveys.

ming and feeling unsure about what to work on, concern
uncertainty on the student’s end about the task at hand;
this may be due to the open-ended nature of the particu-
lar programming activity we studied, but may also indicate
general uncertainty around beginning a new project. Two
of the positive moments offer insights into student expecta-
tions; here, students finished a feature quicker and fixed an
error faster than expected. Students who came in with neu-
tral expectations and found success then were more likely to
feel positive about their programming experiences.

3.2.4 Other Findings
Surveys were also analyzed for correlations between pair-
programming partners as well as individual students who
had taken the survey twice. These correlations found no
statistically meaningful correlations between the responses
of pairs of programmers, and only some minor correlations
between a single individual’s survey responses (i.e., the same
individual took the survey twice over the two class sessions).
These results emphasize how different students may expe-
rience and perceive their programming differently even in
a pair-programming dynamic. Likewise, the same student
may have a very different experience based on the day. Al-
though two students may have the same project, both are
not guaranteed to encounter the same issues. This also sug-
gests a need for more personalized attention to students,
rather than having attention be based on projects alone.

Finally, survey moments were correlated against each other.
These findings are presented in the appendix in tables 4 and
5; all moments with a correlation coefficient of above 0.4 (p-
value > 0.05) are presented, as these indicate some level of
statistical significance. These correlations, while certainly
not causal, do suggest a level of relationship and perhaps a



“clustering” of moments; the mitigation of one moment may
have a significant effect on other moments as well, suggesting
that minor changes that affect the programming experience
can have far-reaching effects.

4. DISCUSSION
Our results suggest that students in block-based program-
ming environments do experience programming self-assessment
moments differently than students in text-based program-
ming environments; while developing our survey, we found
that many of the original moments proposed by Gorson and
O’Rourke required modifications to be appropriate for the
block-based context. Thus, a block-based environment mit-
igates several of the common moments of struggle students
encounter while programming. However, regardless of the
environment, we found that students did experience mo-
ments of struggle during programming, often relating to con-
fusion on what is meant to be done and what should be done
next.

Certain answers were unexpected at first glance; for in-
stance, at least one student rated experiencing receiving a
simple error as a positive experience. Although receiving a
simple error may be ostensibly an irritating experience, it
is potentially the case that a student who has encountered
this moment soon overcame the obstacle, consequently feel-
ing satisfaction and associating the moment with positivity
rather than negativity. Similarly, several students rated the
experience of spending a long time planning as positive or
neutral; it may be that a prolonged planning period bet-
ter prepared students for their programming sessions rather
than providing an irritating experience, or that they enjoyed
the planning and storyboarding process. It is thus likely the
case that these supposed negative self-assessment moments
are, in some cases, actually jumping-off points for students
to experience positive self-efficacy after overcoming them.

Our analysis suggests that students’ programming experi-
ences, at least in this limited setting, are not significantly
tied to their perceptions of how other students perform. This
may be due to an overwhelming number of students answer-
ing that others were performing similarly to them; further
study would be required to confirm this hypothesis. How-
ever, it may also be that novice programming students do
not have a strong basis for comparison; given the class uti-
lized a hybrid approach, it is possible that students were
not in positions to consider how their peers would have re-
sponded to scenarios. Likewise, students’ programming ex-
periences, in general, did not seem to be tied to their identity
statuses, with the exception of male students typically feel-
ing more certain of where/how to begin programming. This
is positive news, as it indicates that students from histor-
ically marginalized backgrounds, at least in this class con-
text, did not generally have worse programming experiences
or encounter more moments of struggle than their peers.

Programming moments often occur together or concurrently;
changing certain moments may therefore have a direct re-
sponse on the overall programming experience, both from
a positive and negative perspective. For instance, reduc-
ing how many students experience code not working as ex-
pected would also likely affect how many students experience
spending a long time working on a feature. Although not all

of these moments are necessarily negative (a student may
spend a long time working on a feature but feel immense
pride upon completing a task, as suggested earlier), it is
generally the case that these moments were associated with
more negative or neutral feelings. Alternatively, these mo-
ments may be noted to students, with students then gaining
the understanding that these moments are common and can
be overcome.

Five particular programming moments seem to be especially
related to students’ overall impressions of their program-
ming experiences; these include three negative (“Feeling un-
sure where/how to start programming,” “Spending a long
time looking for a simple error or mistake,” and “Feeling un-
sure about what to work on”) and two positive (“Finishing
a feature quicker than expected” and “Fixing an error faster
than expected”) moments, with opportunities for students to
minimize discomfort and maximize feelings of success upon
navigating these experiences.

5. LIMITATIONS AND FUTURE WORK
This work was severely limited regarding the number of par-
ticipants. As only 29 survey responses were available for
analysis, of which several were from the same individuals on
different days, statistical findings are limited. Slight devi-
ations in data may have resulted in large swings in results
that may not be present in future analyses. Likewise, for
comparison-focused survey questions, most students chose
that other students experienced moments exactly the same
as them. This may have resulted from survey fatigue, with
too many questions having previously been administered;
consequently, results that deviated from “Same as me” po-
tentially had undue sway in final analysis results. A larger
number of participants may allow for more interesting data
mining analysis, which would be a worthwhile future re-
search topic; other work has related to the automatic de-
tection of these self-assessment moments through trace log
data [12], and consequent work could use more survey re-
sults in conjunction with more programming data to draw
more conclusions.

The students in this course were not computer science ma-
jors; consequently, no specific results can be drawn regarding
retention in the field. A longitudinal study focused on com-
puter science students from their freshmen year on could be
more revelatory in that respect.

Not all students worked in similar conditions; while some
students were in groups of two, others worked individu-
ally or were in groups of three. Consequently, unlike with
a homework assignment, work may not have been evenly
distributed, and a student’s programming experience could
have, at least in part, been influenced by the work of their
peer programmer(s) as well. The replication of this study
on a different assignment would be necessary to test this.

The analysis in this work would be strongly benefited by
the introduction of corrections; for instance, the use of Bon-
ferroni correction would help to more thoroughly assess the
significance of the results we have concluded.

Although not directly related to this work, it is hypothesized
by the researchers that a frank discussion with novice pro-



gramming students regarding these moments would be ben-
eficial for their learning. The work of Gorson and O’Rourke
found that many students considered negative self-assessment
moments to be indicative of their performance as program-
mers; consequently, the naming of these moments as both
common and normal among all students (and professional
programmers) could be highly beneficial to students as they
learn to assess their own programming abilities. Future re-
search could more quantitatively assess the value of these
discussions.

6. CONCLUSIONS
This work is a preliminary investigation into how students
in a block-based programming environment differ in their
struggles and potential successes from students in text-based
programming environments; some of the first work focusing
on students’ comparisons against each other in relation to
how they affect perceived self-efficacy; and, finally, an ex-
ploration into how 15 critical moments during student pro-
gramming affect both programming experience as well as
the experience of other moments for different demographics
of students. This study also served to explore the relevance
and replicability of the work of Gorson and O’Rourke in a
new context; the students in our study were non-majors in
CS0, assessed at the end of their learning of Snap! rather
than in the middle of their learning of Python. Although
replication is highly important to the scientific method, par-
ticularly within computer science, it is often neglected [1];
while this work is not a perfect replication, it does serve
to help verify previous results for new contexts, which is a
contribution.

Overall, we found that the current paradigm for moments
of negative self-assessments does not necessarily fit the ex-
periences of block-based programming novices in our stud-
ied class and assignment context. We propose the addi-
tion of positive moments, as well as the adjustment of mo-
ments to better reflect more general aspects of program-
ming experiences. We did find that students often felt these
moments, and that they revealed them immediately post-
programming. We finally suggest that researchers studying
moments of struggle and success for students in block-based
programming environments consider developing or adapting
their own moments to measure, as there is a clear divide be-
tween block-based and text-based environments, and there
may be other differences with other languages or program-
ming paradigms.

7. REFERENCES
[1] A. Ahadi, A. Hellas, P. Ihantola, A. Korhonen, and

A. Petersen. Replication in computing education
research: researcher attitudes and experiences. In
Proceedings of the 16th Koli calling international
conference on computing education research, pages
2–11, 2016.

[2] A. Bandura and S. Wessels. Self-efficacy, volume 4.
na, 1994.

[3] S. Beyer. Why are women underrepresented in
computer science? gender differences in stereotypes,
self-efficacy, values, and interests and predictors of
future cs course-taking and grades. Computer Science
Education, 24(2-3):153–192, 2014.

[4] D. D. Bowman. Declining talent in computer related
careers. Journal of Academic Administration in Higher
Education, 14(1):1–4, 2018.

[5] M. A. Collura and S. B. Daniels. How accurate is
students’ self assessment of computer skills? 2008.

[6] H. Y. Durak, F. G. K. Yilmaz, and R. Yilmaz.
Computational thinking, programming self-efficacy,
problem solving and experiences in the programming
process conducted with robotic activities.
Contemporary Educational Technology, 10(2):173–197,
2019.

[7] J. Gorson and E. O’Rourke. Why do cs1 students
think they’re bad at programming? investigating
self-efficacy and self-assessments at three universities.
In Proceedings of the 2020 ACM Conference on
International Computing Education Research, pages
170–181, 2020.

[8] M. S. Gunbatar and H. Karalar. Gender differences in
middle school students’ attitudes and self-efficacy
perceptions towards mblock programming. European
Journal of Educational Research, 7(4):925–933, 2018.

[9] I. T. Miura. The relationship of computer self-efficacy
expectations to computer interest and course
enrollment in college. Sex roles, 16(5):303–311, 1987.

[10] E. Panadero, A. Jonsson, and J. Botella. Effects of
self-assessment on self-regulated learning and
self-efficacy: Four meta-analyses. Educational
Research Review, 22:74–98, 2017.

[11] L. M. Soares Passos, C. Murphy, R. Zhen Chen,
M. Gonçalves de Santana, and G. Soares Passos. The
Prevalence of Anxiety and Depression Symptoms
among Brazilian Computer Science Students, page
316–322. Association for Computing Machinery, New
York, NY, USA, 2020.

[12] B. T. Tabarsi, A. Limke, H. Reichert, R. Qualls,
T. Price, and T. Barnes. How to catch novice
programmers’ struggles: Detecting moments of
struggle in open-ended block-based programming
projects using trace log data. Joint Proceedings of the
Workshops at the International Conference on
Educational Data Mining.

[13] U.S. Bureau of Labor Statistics. Computer and
information technology occupations, Apr 2022.

[14] B. C. Wilson and S. Shrock. Contributing to success in
an introductory computer science course: A study of
twelve factors. SIGCSE Bull., 33(1):184–188, feb 2001.

APPENDIX



Got a simple error like something not working as desired
The code was not working as expected 0.66669372
Spent a long time working on a feature 0.49251248
Struggled to fix errors and get the program to work 0.43845407
Took longer than expected to finish a feature 0.62337662

Started over or erased a significant portion of code to try again
Got help from others, e.g. partner or TA 0.50973276
Spent a long time working on a feature 0.4957609
Struggled to fix errors and get the program to work 0.56888717
Took longer than expected to finish a feature 0.50777003

The code was not working as expected
Got a simple error, like something not working as desired 0.66669372
Started over or erased a significant portion of code to try again 0.4957609
Spent a long time working on a feature 0.83888889
Felt unsure where/how to start programming 0.41978988
Spent a long time looking for a simple error or mistake 0.67777778
Struggled to fix errors and get the program to work 0.76784806
Took longer than expected to finish a feature 0.66669372
Spent time planning before starting to program 0.60798964
Felt unsure about what to work on 0.45421998

Got help from others, e.g. partner or TA
Started over or erased a significant portion of code to try again 0.509732762

Spent a long time working on a feature
Got a simple error, like something not working as desired 0.49251248
Started over or erased a significant portion of code to try again 0.4957609
The code was not working as expected 0.83888889
Felt unsure where/how to start programming 0.58655573
Spent a long time looking for a simple error or mistake 0.67777778
Struggled to fix errors and get the program to work 0.76784806
Took longer than expected to finish a feature 0.66669372
The code was not working as expected 0.41978988
Spent a long time working on a feature 0.58655573
Spent a long time looking for a simple error or mistake 0.58655573
Struggled to fix errors and get the program to work 0.52613405
Felt unsure about what to work on 0.75332157

Spent time planning before starting to program
Stopped programming to plan 0.60798964
Finished a feature quicker than expected 0.43506494

Table 4: Correlation coefficients of moments, p-value > 0.05



Spent a long time looking for a simple error or mistake
The code was not working as expected 0.67777778
Spent a long time working on a feature 0.67777778
Felt unsure where/how to start programming 0.58655573
Struggled to fix errors and get the program to work 0.76784806
Took longer than expected to finish a feature 0.66669372
Felt unsure about what to work on 0.51666667

Struggled to fix errors and get the program to work
Got a simple error like something not working as desired 0.43845407
Started over or erased a significant portion of code to try again 0.56888717
The code was not working as expected 0.76784806
Spent a long time working on a feature 0.76784806
Felt unsure where how to start programming 0.52613405
Spent a long time looking for a simple error or mistake 0.76784806
Took longer than expected to finish a feature 0.60798964

Took longer than expected to finish a feature
Got a simple error, like something not working as desired 0.62337662
Started over or erased a significant portion of code to try again 0.50777003
The code was not working as expected 0.66669372
Spent a long time working on a feature 0.66669372
Spent a long time looking for a simple error or mistake 0.66669372
Struggled to fix errors and get the program to work 0.60798964

Felt unsure about what to work on
Stopped programming to plan 0.454219979
Felt unsure where/how to start programming 0.753321569
Spent a long time looking for a simple error or mistake 0.516666667

Finished a feature quicker than expected
Spent time planning before starting to program 0.43506494
Fixed an error faster than expected 0.67138482

Fixed an error faster than expected
Finished a feature quicker than expected 0.67138482

Table 5: Correlation coefficients of moments, p-value > 0.05, cont.




