
Exploring Design Choices in Data-driven Hints for Python
Programming Homework

Thomas W. Price
NC State University
Raleigh, NC, USA
twprice@ncsu.edu

Samiha Marwan
NC State University
Raleigh, NC, USA

samarwan@ncsu.edu

Joseph Jay Williams
University of Toronto

Toronto, CA
williams@cs.toronto.edu

ABSTRACT
Students often struggle during programming homework and
may need help getting started or localizing errors. One promis-
ing and scalable solution is to provide automated programming
hints, generated from prior student data, which suggest how a
student can edit their code to get closer to a solution, but little
work has explored how to design these hints for large-scale,
real-world classroom settings, or evaluated such designs. In
this paper, we present CodeChecker, a system which generates
hints automatically using student data, and incorporates them
into an existing CS1 online homework environment, used by
over 1000 students per semester. We present insights from
survey and interview data, about student and instructor per-
ceptions of the system. Our results highlight affordances and
limitations of automated hints, and suggest how specific design
choices may have impacted their effectiveness.

Author Keywords
automated programming hints; computing education.

CCS Concepts
•Social and professional topics → CS1; •Human-centered
computing → Human computer interaction (HCI);

INTRODUCTION
Students often struggle during programming homework in
introductory Computer Science (CS) courses, and may need
help getting started, localizing errors, or remembering when
and how to use specific code elements. Additionally, in large or
online courses, instructors are not always available to provide
this help, suggesting the need for automated support that is
always available and can scale to any class size.

In this paper we explore how to provide students with program-
ming hints that can help them progress and learn during prac-
tice assignments. While instructors commonly hand-author
hints or explanations that can be shown along with a homework
problem, we explore how to present automated programming
hints. These hints can be data-driven, generated in real time

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

L@S’21, June 22–25, 2021, Potsdam, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 10.1145/3430895.3460159.

DOI: https://doi.org/10.1145/3430895.3460159

using prior students’ data, and tailored to a student’s current
code [3]. Such hints can help students when they get stuck by
suggesting specific edits that students can make to bring their
code closer to a correct solution.

In this paper, we explore how to design data-driven program-
ming hints to support an existing online homework environ-
ment in a large, introductory CS course. We do this by de-
veloping and deploying a prototype data-driven hint system
called CodeChecker. Our goal is to understand the benefits
and trade-offs of specific choices that we made in creating
CodeChecker, in order to inform the design of future sys-
tems. To do so, we highlight design choices that creators of
data-driven programming hints will have to make, and we
show how these choices have varied across prior work. For
example: Where should hints be displayed – embedded in a
student’s code or in a separate window? How much detail and
how many hints should be included? We then discuss specific
choices we made in creating CodeChecker, and justify these
choices, drawing on design considerations derived from prior
educational literature.

We deployed CodeChecker with 457 students during 2 weeks
of Python programming homework. We then collected data
from surveys, and student and instructor interviews, which
allowed us to investigate perceptions of the specific design
choices we made. Our results highlight how to better design
data-driven hints for large-scale classroom deployments. They
also surface trade-offs in the design of these systems, such as
the tension between making help salient and respecting stu-
dents’ desire for independence. This paper’s goal is to provide
insights that designers can use in turning hint generation algo-
rithms into real-world, student-facing systems. The primary
contribution of this work is highlighting design choices for
data-driven hint systems, as well as qualitative results from
from an empirical classroom study that suggest affordances,
limitations and trade-offs in the design of data-driven hint
systems.

CodeChecker SYSTEM DESIGN
We created a prototype system called CodeChecker that au-
tomatically generates and displays transformation hints, sug-
gesting edits that a student can make to their current code to
get closer to a correct solution. When a student submits their
code for evaluation, the hints are displayed in a panel, which
shows a copy of the student’s code, annotated with sugges-
tions. These hint annotations indicate available hints that a
student can investigate further. A red strikethrough indicates

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

283

https://doi.org/10.1145/3430895.3460159

an available deletion hint, a purple strikethrough indicates
code that could be replaced, a plus icon indicates where code
can be added. Students can hover over any of the annotations
to see the full hint as a tooltip, including a natural language
explanation and additional details about what code is miss-
ing. CodeChecker also summarizes the hints, giving a list of
all missing code elements at the end. Unlike feedback from
test-cases, which only tell a student if the output of the pro-
gram is correct, these hints show how to move towards correct
functionality. A student can resubmit their code at any time to
receive updated hints, which adapt to any changes the student
has made. CodeChecker uses the SourceCheck algorithm [1]
to automatically generate programming hints, but the algo-
rithm does not specify how to present these suggestions to the
student.

Dimensions of the Design of Transformation Hints
In this section, we consider challenges and opportunities that
arise in real-world deployments of data-driven hint systems,
and discuss how they shaped the design of the CodeChecker
system. We propose 3 relevant dimensions along which data-
driven hints can vary. We present the choices we made in
designing CodeChecker, and provide our rationale for each.
Our goal here is to explicitly surface our choices, so that our
evaluation can better inform the design of future systems by
investigating how students perceived these choices.

How is the hint chosen?
Many hint generation algorithms can identify multiple possible
edits a student can make to improve their code at any given
time. A system must therefore have a mechanism for selecting
which hint to show. Some systems show one “best” hint, as
identified by the algorithm; however, technical evaluations
suggest that data-driven algorithms often fail to identify which
hints are most important and relevant to the student [2]. Our
Choice: Let the student browse hints and select one. Rather
than choosing a hint for the student, CodeChecker displays
annotations in the student’s code, marking each available hint,
and allows the student to browse these hints and select one to
view further, by hovering over it. This approach has been used
in other systems to ensure that the most relevant hint to the
student is always available. Since students may already have
preconceptions about where their errors are, this allows them
to find the most relevant hint. If a system chooses only one
hint to show, there is a risk that this hint will not align with
the student’s goals, leading students to give up using hints
[2]. However, for students who do not have a strong idea of
where they want to change their code, this large number of
hint choices may be overwhelming, and take additional time
to parse.

Where to display hints?
Traditionally, programming hint systems have displayed hints
in a dedicated panel or dialog box in the user interface (e.g. in
ITAP [3]). However, many programming environments show
compiler errors and suggestions by annotating a user’s code
(e.g. with a red underline) and showing tooltips. Our Choice:
Annotate a student’s code with hints, and also summarize
hints in a separate area. Transformation hints suggest an
edit to specific token(s) in a student’s code. To make these

suggestions more salient, we represent them by annotating the
relevant token in a copy of the student’s code. This suggests
exactly where an error is, helping to make hints actionable.
If a student hovers over any of these annotations, a tooltip is
shown with a textual explanation of the suggested change (e.g.
“You may want to delete this code”). However, as students
may not always use tooltips, we also summarize the hints at
the bottom of the hint display.

How much detail to include?
Prior work has distinguished between pointing hints that sim-
ply identify where an error or next-step is located, and bottom-
out hints that directly tell the student what to do. A transforma-
tion hint could be presented as either, or something in between,
and this choice entails trade-offs. A pointing hint may not be
actionable enough to help a struggling student, but bottom-out
hints can be easily abused by students to expediently com-
plete problems without learning. Our Choice: Show exactly
where to change the code, and what elements are missing, but
not what code to add. Rather than giving a student an exact
edit to make (e.g. “On line 3, add: for i in range(10)”),
CodeChecker only suggests which code elements are missing
(e.g. “You may be missing a for loop) and where to add
them (via annotations). This gives the student an actionable
next step, but it does not give away exact code structure, with
the goal of encouraging reasoning. However, this may also
cause difficulties for struggling novices, who may have trouble
translating these higher-level suggestions into code.

STUDY DESIGN
To understand the impact of CodeChecker’s hints on students’
programming experience, we deployed CodeChecker in a
classroom setting, and collected survey data on students’ ex-
perience using the hints, as well as in-depth interviews with
six participants and the instructor.

Population
Our study took place in an in-person introductory Computer
Science course at a large public university in North America.
The class consisted of CS-majors and non-majors with little
to no prior programming experience. Our study focused on
Python programming homework assignments during weeks 7
and 8 of the course, where students were practicing the chal-
lenging topic of lists and dictionaries. The class included 457
students who attempted any week 7 and week 8 problems and
who consented to their data being analyzed. These students
were randomly assigned to receive hints either in week 7 only
(n = 237) or in week 8 only (n = 220), and to have no hints
in the other week. We do not investigate the experimental
comparison here, but include survey data from students in
both groups, reporting on their experiences with the hints.

Procedure
Homework Intervention & Survey: During each homework
assignment, students completed 4 code writing tasks in an
online practice environment called PCRS. In each problem,
students completed a function stub based on a brief descrip-
tion and examples of correct input/output. Each time students
submitted their code, it was checked with 4-7 test cases, and
the results were reported to the student. Students could submit

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

284

as many attempts to a given problem as they wanted, revis-
ing their solution until it passed all test cases. If a problem
included hints, CodeChecker would display hints above the
test case feedback. Each week included 2 practice problems
that offered CodeChecker hints, which were the subject of the
survey collected (below).

To explore students’ perceptions about our design of hints, we
administered a survey directly following the homeworks with
hints. The survey included 4 open-ended survey questions,
asking what was most useful and not useful about hints, what
kinds of explanations were helpful, and how hints compared
to help from instructors. We analyzed 349 survey responses
from students who consented and also reported remembering
seeing the hints (students may not have seen hints if they got
practice problems correct on their first try).

Follow-up Interviews: We also recruited six students (1 male,
5 female) for follow-up interviews, after the class completed.
To encourage students’ participation, we offered a $10 gift card
as compensation for student time. One researcher conducted
one-on-one, semi-structured interviews, which lasted for 50-
60 minutes. To ensure hints were salient in the student’s
mind during the interview, we asked the student to complete
two practice programming problems in PCRS, with access to
CodeChecker’s hints. These problems were from the course,
and were more challenging than the week 7 and 8 problems,
to increase the need for hints. After each practice exercise,
the interviewer asked the student follow-up questions. The
students were asked to describe their process of interacting
with hints, their perceptions of the hints, including features
that were more and less useful, and situations when they would
and would not want hints. We also asked students to reflect on
their experience with each of CodeChecker’s design choices.

Analysis
Thematic Analysis: To analyze interview and open-ended
survey data, we adapted techniques from thematic analysis.
We started with the interview data, which was more detailed,
and included 12 interviews from 6 students (conducted after
each of the two programming tasks). After segmenting the
data, two researchers worked independently to open-code 4 of
these interviews (from 2 students), using inductive analysis.
They then discussed the resulting codes, merged them into a
smaller group of 35 codes, and defined an initial codebook.
The researchers then iteratively re-coded the same 4 inter-
views, measuring agreement, resolving any conflicts, and clar-
ifying definitions in the codebook after coding each interview.
The researchers had complete agreement (across all codes)
for 74%, 91%, 91%, and 93% of the segments on the first
4 interviews respectively, with most codes reaching perfect
agreement. Having established agreement, a single researcher
proceeded to code the remaining 8 interviews, suggesting 2
additional codes to add. The same researcher also randomly
sampled 100 non-empty survey responses, each including an-
swers to 4 open-ended questions, and coded these responses
using the same codebook. Afterwards, both researchers re-
viewed all the data, discussed the codes and grouped them into
themes. We focus here on themes most relevant to our design.

RESULTS
Here we present results from our analysis of students’ inter-
view and survey responses, with the goal of understanding
how students’ experiences inform our specific design choices.

How is the Hint Chosen?
Students discussed our choice to show them annotations for
all available hints and to let them select one:

Too many hint choices can be overwhelming. Students ex-
pressed that seeing multiple hints to select from could be “a
little bit disorganized” [P4]1, and that “with so many options,
you may get lost.... it becomes so overwhelming that I don’t
actually know what I am doing wrong” [P2]. This is espe-
cially true “if you have a longer piece of code” [P5], where the
number of hints can get extreme; as one student noted in the
survey, the hint annotations “scratched out my entire code” [S].
However, when the number of hints was more manageable,
students could make use of them: “I would read them all...
most of the time, I would have maybe like two or three hints,
and it wouldn’t be too extreme” [P4]. One student noted the ad-
vantages of multiple hint options: “I prefer multiple for sure...
it’s helpful to see, oh wow, a lot of this is not correct” [P5]. By
contrast, “if there’s only one suggestion I feel like you’ll be so
caught up on that comment that it takes away from the rest of
the problem” [P5].

Students wanted structure for hint choices. Three intervie-
wees independently suggested organizing multiple hints into
a progression: “So give one hint at a time... because some-
times it’s only one part you’re confused about and not the
whole thing” [P3]. Students also suggested how to organize
this progression, e.g. “line by line or issue by issue” [P4], or
with increasing detail: “Less explanation to start with... If still
stuck, more explanation should be available” [S].

Where to display hints?
Students discussed our choice to visually annotate their code
with hints, and to show a summary at the end:

Embedding hint annotations in students’ code helped di-
rect their attention. Every student we interviewed mentioned
that hint annotations helped them localize needed changes, as
hints “point out errors in my code that like I might not have
caught myself ” [P1]. This was a priority for some students:
“the hint points where the error is... I think that’s the num-
ber one thing.” [P3]. The embedded, visual nature of the hint
annotations helped localize these errors: “what’s helpful is
... it’s highlighted in a way that it gets pretty apparent... it’s
a lot more visual” [P4]. One student noted that this location
information may be valuable, even if the suggested action
(described in the tooltip) is not: “here the annotations were
not that accurate, but at least it shows you where and what
could be wrong.” [P3]. Some students in the survey also noted
that the annotations gave them a chance to think about how to
fix the error before seeing the full hint suggestion: “when it
cross[es] out my wrong part... I know that part is wrong, and
I have to figure out that by myself.” [S]

1A number with ‘P’ (e.g. P4) after quotations indicate interview
participants. ‘S’ indicates a survey response.

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

285

Symbolic annotations were difficult for some students to
interpret. In order to succinctly summarize multiple hints
visually, we used text strikethroughs (red for deletions, purple
for replacements), and icons (a plus sign for insertions). How-
ever, students noted challenges interpreting the different colors
and symbols. “I actually didn’t know the difference between
the red and purple” [P4] strikethroughs, one student noted.
Another thought that the strikethrough should not be used to
communicate replacements: “I don’t think you should cross
out the ones that have suggestions” [P3]. Similarly, the plus
icon was not universally clear: “I don’t really understand the
meaning of these cross marks” [P2]. There was also concern
that not all students would know to hover over annotations to
read the tooltips: “I think not alot of people are gonna hover
on their own code” [P4]. However, other students expressed
no difficulty intuiting this, saying they hover “all the time,
whenever I get them” [P1], navigating the annotations easily.
The interface did provide a link to a help page explaining each
annotation, but we never observed a student using this link.
The inconsistent interpretation of the annotations suggests that
feedback designers should use icons and text markup carefully.
It also reinforces the need for pedagogy to support the use of
hints, as one student suggested: “in the first class when the
professor is explaining [the programming environment] they
could give some information” [P6].

How much detail to include?
Students discussed our choice to avoid suggesting exact edits
to make, showing only where to make a change and the type
of code element to add:

Students needed more detail to use hints. Students appreci-
ated how specific the hints’ location information was, saying
“It’s good because it tells you exactly what’s wrong” [P5]. How-
ever, for most students, the hints were too vague to be imme-
diately actionable, “if it could be just more elaborated I would
have understood... it’s also a little ambiguous” [P2]. This
was echoed in the surveys, saying hints were “too vague” [S]
and “not as specific compared to in-person hints” [S]. The
fact that students found the hints to be vague is likely due to
our decision not to suggest exact edits. Students also wanted
more explanation of why a hint made a suggestion, especially
when hints contradicted their existing plan, “it says... to add
a binary operation. I’m like, ‘Why?,’ because creating a new
list doesn’t really require a binary operation” [P1].

Withholding exact edits did not promote reasoning. Our
rationale for avoiding suggestions of exact edits was to encour-
age students to reason through the hint, rather than following
it blindly. In practice, students reported that the hints did not
provide enough detail to promote learning: “It doesn’t really
help engage the thought process so you get better. It’s more
of just saying, like, oh, this is wrong. This is wrong. This is
wrong” [P5]. This may be in part because novices lacked the
prior knowledge to interpret hints. One student noted, “it’s
very vague. I can’t tell what I would need to do unless I already
have sort of an idea prefixed in my mind” [P4]. One way we
tried to promote reasoning was by keeping hints fine-grained
(i.e. suggesting one token at a time instead of a whole line),
but as the instructor pointed out, students can still get that

information, “it’s just that they’re doing it in two steps instead
of one.” Students did report spending additional time trying to
interpret hints, “just sort of going through my whole thought
process again because then it would be kind of confusing” [P4],
but this time did not seem to get them to an answer any more
efficiently than students who did not have hints.

DISCUSSION
Our results suggest that certain design choices we made may
have reduced the effectiveness of hints, and others involve
trade-offs that must be balanced. Here we highlight key take-
aways to inform the design of future systems.

Transformation hints should suggest precise next steps. One
of our goals in CodeChecker was to promote reasoning and
prevent help abuse by withholding the exact edit a student
should make, showing them only where to edit and the general
type of edit (e.g. “call a function” not “call len()”). Other
tutoring systems similarly employ “pointing hints” and mini-
mize “bottom-out” hints that give away the answer. Our results
suggest that for transformation hints this may not be advis-
able, since they do not include human-authored explanations.
We found that when the hints did not communicate exactly
what edit to make, students found them vague or confusing
and lacked sufficient detail to evaluate whether the hint was
appropriate for their situation.

The system should prioritize hints for students. Drawing on
prior work showing that system-selected hints could contradict
students’ own goals [2], we explored how to allow students to
select a relevant hint, by displaying all available hints as anno-
tations to their code. However, we found that this choice could
be overwhelming for students, especially if many hints were
available. It may be particularly difficult for novices to evalu-
ate which hint is most useful, since they lack domain knowl-
edge to begin with. Hint systems should therefore present a
single, top-priority hint for the student to consider, to reduce
uncertainty. However, students also appreciated the ability to
browse alternative hints, if the original was not useful to them,
suggesting that student choice should be supported, just not
the default.

REFERENCES
[1] Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017a.

Evaluation of a Data-driven Feedback Algorithm for
Open-ended Programming. In Proceedings of the
International Conference on Educational Data Mining.

[2] Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017b.
Hint Generation Under Uncertainty: The Effect of Hint
Quality on Help-Seeking Behavior. In Proceedings of
the International Conference on Artificial Intelligence in
Education.

[3] Kelly Rivers and Kenneth R. Koedinger. 2017.
Data-Driven Hint Generation in Vast Solution Spaces: a
Self-Improving Python Programming Tutor.
International Journal of Artificial Intelligence in
Education 27, 1 (2017), 37–64.
http://link.springer.com/10.1007/s40593-015-0070-z

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

286

http://link.springer.com/10.1007/s40593-015-0070-z

	Introduction
	CodeChecker System Design
	Dimensions of the Design of Transformation Hints
	How is the hint chosen?
	Where to display hints?
	How much detail to include?

	Study Design
	Population
	Procedure
	Analysis

	Results
	How is the Hint Chosen?
	Where to display hints?
	How much detail to include?

	Discussion
	References

