
Promoting Students’ Progress-Monitoring Behavior during
Block-Based Programming

Samiha Marwan
samarwan@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Preya Shabrina
pshabri@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Alexandra Milliken
aamillik@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Ian Menezes
ivmeneze@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Veronica Catete
vmcatete@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Thomas W. Price
twprice@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Tiffany Barnes
tmbarnes@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Providing students with adaptive feedback on their progress on
programming problems has been shown to motivate students and
improve their performance, but little is known about how such
feedback might impact student self-regulated learning during pro-
gramming. Self-regulated learning (SRL) involves student planning
a task, monitoring their progress, and reflecting on the outcome.We
explored students’ SRL behaviors, particularly progress monitoring,
when programming using each of three different scaffolds. The
first scaffold is a subgoal checklist for the given programming task,
the second adds automated, binary completion feedback on each
subgoal, and the third adaptively reflects an automated percent
progress estimate of student progress on each. Through interviews
and programming logs from 17 students solving a problem in a
block-based programming environment, we investigated the ex-
tent to which each scaffold supported student SRL. Our qualitative
study results suggest that all three scaffolds could be useful for
student SRL, but students felt that a combination of the checklist
and progress feedback provided them with a balance of autonomy
and motivation to persevere in programming. Furthermore, our
results suggest that explaining how the automated feedback system
works may have encouraged students to reason about the feedback
they receive, which was a key intended outcome to improve SRL
during programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’21, November 18–21, 2021, Joensuu, Finland
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8488-9/21/11. . . $15.00
https://doi.org/10.1145/3488042.3488064

KEYWORDS
self-regulated learning, block-based programming, progress moni-
toring, progress feedback

ACM Reference Format:
SamihaMarwan, Preya Shabrina, AlexandraMilliken, IanMenezes, Veronica
Catete, Thomas W. Price, and Tiffany Barnes. 2021. Promoting Students’
Progress-Monitoring Behavior during Block-Based Programming. In 21st
Koli Calling International Conference on Computing Education Research (Koli
Calling ’21), November 18–21, 2021, Joensuu, Finland. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3488042.3488064

1 INTRODUCTION
Learning to program can be quite challenging, especially for novice
learners, and these challenges can lead to negative self-assessments
[15]. In these situations, learners benefit from encouragement and
feedback on their progress, helping them to persevere when they
are capable of solving a problem but unsure about their ability to do
so [8, 31]. This progress feedback can come from an instructor, but
recent work has shown that students also benefit from automated
progress feedback [17, 26]. This feedback is immediate and adap-
tive, highlighting students’ progress, as well as their mistakes, in
real-time as they work, and it has been shown to increase students’
performance [12, 29], and intentions to persist in Computer Science
(CS) [26]. This goes beyond traditional “autograders,” which are
generally designed to assess a complete program. Rather, feedback
on students’ progress can explore the potential for automated feed-
back when it is needed most: immediately, during problem solving
when students are not yet ready to submit for auto-grading [9, 26].
Such feedback may be particularly impactful in block-based and
novice-centered learning environments, as it may help guide stu-
dents’ natural exploration and “tinkering” towards correct solutions
[10].

However, while automated progress feedback provides critical
support to students during problem solving, it also raises questions
about how such feedback may affect students’ own ability to moni-
tor their progress – a key self-regulatory skill that is important for

https://doi.org/10.1145/3488042.3488064
https://doi.org/10.1145/3488042.3488064

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Marwan, Shabrina, Milliken, Menezes, Catete, Price, and Barnes

learning [22]. If students can rely on automated progress feedback,
will they trust it blindly and stop verifying their own work? Or,
alternatively, could such feedback encourage students to reflect
more often on how they are progressing with respect to assignment
goals? This question is particularly important for automated feed-
back, since it lacks the expert judgement of a human and can be
misleading [36, 38, 44]. Given the potentially faulty guidance, it is
important that students reflect on their own programs’ correctness
and monitor their own progress. The answer to the question of how
students’ self-regulated learning is impacted by automated progress
feedback may also depend on how such support is presented to the
students. To investigate this question, we investigated how three
different scaffolds could support students in monitoring their pro-
gramming progress in a block-based programming environment.
Our first scaffold is a checklist of subgoals for the given program-
ming task, which students can check to self-monitor their progress.
Our second scaffold provides the same list but with adaptive, im-
mediate completion feedback that indicates when each subgoal
is complete during problem solving. Our third scaffold provides
adaptive immediate progress feedback, that indicates how much
progress a student has made toward completing each subgoal.

In this paper we asked the following research questions, RQ1:
Howdo students enact progressmonitoringwhen given scaf-
folds (i.e. subgoal checklist, progress feedback) during block-
based programming?, and RQ2: What are students’ percep-
tions of each scaffold? To answer our research questions, we ran
a pilot qualitative study with 17 students and randomly assigned
them to solve a programming task using one of the three scaffolds:
checklist, completion, or progress. For the two adaptive scaffolds
(completion and progress), we also verbally communicated how the
feedback system works, as a way to encourage students to reason
about the feedback, particularly when it may not match student
expectations. We analyzed programming trace logs and interviews
to investigate our research questions. We found that all three scaf-
folds led most students to follow the ordered subgoal checklist, and
monitor their progress on the subgoals while programming. Our
log data analysis also suggests that the adaptive progress feedback
interface acted as a reminder for students to monitor their progress
more frequently, and to adjust their problem-solving strategy. Our
results suggest that, rather than replacing a students’ own progress
monitoring process, automated progress feedback – and even a non-
automated subgoal list – can support students in their own progress
monitoring, and encourage them to reflect on the feedback. Both of
these key aspects of self-regulated learning behavior are important
learning goals for open-ended programming assignments, but may
not be explicitly taught or tracked in introductory programming
assignments.

2 RELATEDWORK
Programming feedback is essential for students’ learning and
motivation to learn [43]. A growing body of work in computing
education has developed and evaluated various computer-based
tutors that provide automated programming feedback [18, 19, 35,
45]. Depending on the programming language, such feedback can
have various forms, such as compiler error messages [2], hints [27],
or assessment feedback (e.g. autograders’ feedback) [1, 45]. In our

literature review we focus on feedback provided in block-based
programming environments.

Block-based programming environments are inherently designed
to simplify the programming process for novices, for example by
reducing the burden of receiving syntax errors [7, 13]. However,
researchers have also integrated them with various automated feed-
back features to scaffold students’ performance and learning during
problem-solving [1, 17, 26–28, 35, 45]. For example, Ball used cor-
rect instructor solutions to develop an autograder for the Snap!
block-based programming environment, to help students assess
their code. Price et al. extended the Snap! block-based program-
ming environment with a system that provides data-driven hints
to help novice students when they get stuck [35]. In the “BlockPy”
block-based programming environment, Gusukuma et al. devel-
oped immediate misconception-based feedback, and found that it
improved students’ performance [16]. While these support features
can improve students’ performance by helping them fix mistakes,
or suggesting missing components, they have not been evaluated
with respect to students’ self-regulatory skills, such as planning,
or progress monitoring, which play an important role in learning
[11, 22], self-efficacy, and growth mindsets [23].

Self-regulated learning (SRL) “is a cognitively and motiva-
tionally active approach to learning” [46], where students monitor
and modify their learning strategies in response to outcomes. In
programming, Loksa et al. proposed a theoretical framework for
the role of SRL, including planning, process monitoring, compre-
hension monitoring, reflection on cognition, and self-explanation
[22]. Their think-aloud study with CS1 and CS2 students showed
infrequent, inconsistent self-regulation behaviors, and most were
shallowly applied, if at all. However, Kumar et al. found that em-
bedding SRL principles in a Java learning environment improved
students’ performance in programming [21]. In this work, we focus
on “progress monitoring” – a key aspect of SRL that is important
for a number of reasons. First, progress monitoring helps students
stay motivated as they can keep track of their progress, and adapt
strategies when they are not making progress, leading to increased
progress [14]. Second, progress monitoring also guides students to
adjust their help-seeking and reason about the feedback they re-
ceived, which can improve their learning [6, 25, 27]. Sawyer showed
that most learners need support to monitor their progress effec-
tively, and they need feedback to verify their own self-evaluations
[39]; however, there is little work that examines how to promote
these skills in programming [21, 23]. For example, promoting stu-
dents to create subgoal labels for a given task can be considered
as a form of helping students plan their work, which has been
shown to improve their performance [24]. However, it is unclear if
creating subgoals can support students’ SRL behavior. In addition,
students, particularly novices, often make many incorrect code
design choices, and it is hard for novices to predict the effective-
ness of their design choices [39]. This suggests that students need
support, (or scaffolds), to help them develop good SRL skills (e.g.
progress monitoring, self-explanation, and self-assessment), which
can improve their problem-solving efficiency and retention.

Visual languages and novice progress monitoring. Visual
languages are built to provide students with immediate feedback
upon running the code for visual tasks, such as moving a sprite.
While it may seem obvious how to use this feature to consistently

Promoting Students’ Progress-Monitoring Behavior during Block-Based Programming Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

monitor progress, novices often engage in unproductive tinkering
behaviors, such as avoiding running/testing code for long periods of
time, or repeatedly running their code without making any changes
[10]. This suggests that novice students need more scaffolds for
the problem-solving process, i.e. through progress feedback. Ad-
ditionally, for programming tasks with many valid solutions, it
is a challenge to provide perfectly accurate automated progress
feedback [34, 42], showing the importance of promoting students’
progress monitoring skills so they can verify the received feedback.

3 FEEDBACK SYSTEM AND INTERFACE
DESIGN

3.1 Adaptive Feedback System
The basis of our feedback system, embedded in the programming
environment shown in Figure 1, relies on cutting-edge technologies
to build data-driven autograders for subgoals of a specific pro-
gramming task, called Subgoals Detectors [26]. To implement these
detectors, two experts first constructed a list of subgoals of a given
programming task based on how prior students have approached
this task. We then implemented a data-driven autograder to detect
the completion of each subgoal, while students are programming, by
comparing their current code with prior students’ correct solutions.
We call these autograders subgoal detectors, described in detail
in our prior work [26]. In prior work, we embedded our subgoal
detectors in Snap! [13], a block-based programming environment,
for simple programming tasks (with solutions of 7-10 code blocks),
to provide students with adaptive feedback on whether they com-
pleted each subgoal. In a camp study, we found that this adaptive
feedback increased students’ persistence in CS, and improved their
performance on future tasks [26]. In a classroom study, we found
that the system improved students’ engagement with a homework
programming task [29]. We also investigated interactions between
feedback and student behavior - showing that accurate feedback
during problem solving could reduce student idle time, but students
responded differently to the completion feedback, sometimes ignor-
ing it, or sometimes following system feedback, without running
their code to self-assess or reflect on it [42].

In this work, we used the same feedback system, but for an open-
ended programming task (described in Section 4). In addition, we
extended each subgoal detector to calculate progress based on the
percentage overlap between students’ current code and the code
features used by prior students to complete that subgoal. In this
work, we explore how different interfaces with different scaffolding
levels, that rely on the subgoals detectors, can support students
and promote their progress monitoring while they program an
open-ended programming task, as we discuss below.

3.2 Three Interface Designs
In our prior work, we found that high school students working
in the Snap! programming environment needed assistance to plan
their work and keep track of their progress [26]. Further analysis
of this data (not reported in the publication) showed that students
used a variety of unorganized problem-solving strategies that led to
inefficient performance. These findings prompted us to investigate
the impact scaffolds may have on student progress monitoring.
Based on learning research, breaking a task into subgoals facilitates

learning in programming [24], and providing this list within the
programming environment satisfies the multimedia learning design
principle of contiguity - spatially placing assistive content where
it is needed [32].

Our first interface is a checklist of hand-crafted labels of sub-
goals as shown in Figure 1. The checklist interface does not provide
adaptive feedback, but allows students to indicate when they feel
each subgoal is complete. This checklist gives us the opportunity
to investigate students’ planning and progress monitoring on the
task, and provides a baseline for comparison with the other two
adaptive feedback interfaces.

We designed the second two interfaces to provide adaptive feed-
back, but each with a different level of scaffold, guided by learning
theories on effective forms of feedback [40, 43], to support student
progress monitoring. Interface 2 provides adaptive completion
feedback by adding colored highlights to the subgoal list, as shown
at the bottom left of Figure 1, in green when a subgoal is complete, or
red when a subgoal is subsequently broken, during problem solving.
This interface follows Scheeler et al.’s effective performance feed-
back design principles to be (1) immediate (detected in real time), (2)
specific (highlighting the relevant subgoal), (3) positive (confirming
completion), and (4) corrective (indicating mistakes) [40]. Interface
3 provides adaptive progress feedback using a visual progress bar
and numeric estimate of percent completion for each subgoal, as
shown at the bottom right of Figure 1. Using progress bars for each
subgoal is similar to skill meters, which is the most common repre-
sentation for progress monitoring used in learning environments
[4, 30]. Providing continuous progress feedback has been shown to
be important for student motivation, particularly when students
cannot determine progress on their own [41]. We also allow the
interface to update the progress bar for each subgoal when it passes
intervals of about 15% so the changes would be noticeable, but not
distracting.

In summary, in this work we took design principles from prior
work on limitations and theories of effective feedback [40, 43], and
incorporated them as features in a block-based programming envi-
ronment. As discussed below, we conducted a qualitative pilot study
to explore how these interfaces with different levels of scaffolds
can support student progress monitoring behavior.

4 METHODS
The goal of this study is to answer the following research questions:
How do students enact progress monitoring when given scaffolds (i.e.
subgoal list and adaptive progress feedback) during block-based pro-
gramming?, and What are students’ perceptions of each interface?
To answer these questions, we conducted a qualitative user study
with 17 students solving a programming task using one of the 3
interface designs described in Section 3.2, followed by student in-
terviews. We used both log data and interview data to investigate
students’ progress monitoring behavior, and their perceptions on
the interfaces, as detailed below.

Participants:We recruited participants for this IRB-approved
study from a summer high school computer science internship
program. Each intern had some prior programming experience,
with 1 or 2 Computer Science courses and 5 weeks in the block-
based coding internship. Internship advisors invited participants

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Marwan, Shabrina, Milliken, Menezes, Catete, Price, and Barnes

1

2 3

Figure 1: Snap! programming environment, where feedback was placed on the bottom right of the interface according to
student condition. Interface 1 (green outline, inset) has checkboxes, Interface 2 (blue, bottom-left) has highlights and system
checks, and Interface 3 (red, bottom-right) has green progress bars with percent progress.

to the study verbally and via Slack. Seventeen interns participated,
aged 15-18, with 14 females and 3 males.

Procedure: The first author, a researcher in CS education, con-
ducted a scripted one-on-one study with each participant1. First,
the participant took a pre-survey to collect consent, demographics,
and prior programming background. Next, the researcher asked
students to read instructions for the Draw Fence task and complete
it in Snap!. Figure 2 shows one students’ correct solution to the
Draw Fence task and its output. This program takes user input
for the width and height of a picket fence composed of a grid of
squares with triangles on the top. Based on the instructions given
with the Draw Fence programming task, we divided the task into
5 subgoals, created a subgoal detector for each, then augmented
the Snap! programming environment with a text describing each
subgoal. As shown in Figure 2, subgoal 1 requires the student to ask
for user input for the fence height and width (lines 1-2, Figure 2).
Subgoal 2 requires students to draw a square as shown in the ‘Draw
a Square’ custom block (similar to a function). Subgoal 3 requires
drawing a series of squares (lines 13-18, Figure 2), where the ‘Draw
Square’ custom block was nested in a ‘repeat’ block (i.e. a loop) that
iterates ‘width/height’ times. Subgoal 4 requires drawing a triangle
which was implemented using the custom block ‘Draw Triangle’.
Subgoal 5 requires drawing a series of triangles (lines 7-9, Figure
2). The Draw Fence task can be solved using several strategies that
correspond to distinct sets of subgoals.

Next, each student was assigned randomly to one of three inter-
face conditions (described in detail above in Section 3). Condition 1

1Due to the COVID-19 pandemic, we conducted this study online via Zoom.

(n=6), Condition 2 (n=5) and Condition 3 (n = 6) correspond to Inter-
face 1, 2, and 3, respectively. For Condition 1, the researcher noted
that the system provides a list of suggested subgoals, and students
have the option to check or uncheck any subgoal when they feel
it was complete or not. In Conditions 2 and 3, the researcher intro-
duced the system with the following statement: “This is a new
system for assessment feedback, and it’s based on matching
your code to what previous students have done to solve the
same problem. Since everyone codes differently, it’s not al-
ways 100% correct”. This was done to promote student reflection
and verification about the adaptive feedback, particularly when
it does not match their expectations. In Conditions 2 and 3, while
students were programming, our adaptive feedback system (i.e.
subgoals’ detectors) continuously and simultaneously determined
progress and completion for each subgoal. For example, in Figure
1, Condition 2, student changes resulted in simultaneous updates
to the completion feedback for multiple subgoals, showing that the
student broke subgoal 2 (i.e. drawing a square) while attempting a
later subgoal (i.e. drawing a triangle).

After the student completed the task, or 30 minutes, whichever
came first, we interviewed each student for 10-15 minutes, to inves-
tigate how the interface was helpful, and to what degree the student
was relying or reflecting on the system feedback. In particular, the
researcher asked about (1) whether the feedback systemwas helpful
or unhelpful, and why, and (2) what information students wanted to
know during programming, (from a human or automated feedback).
At the end of the interview, the researcher demonstrated the other
two conditions (i.e. interfaces), and asked for students’ preferences
and design suggestions.

Promoting Students’ Progress-Monitoring Behavior during Block-Based Programming Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

Figure 2: Draw Fence Solution with line numbers on left. In the middle are two custom blocks (i.e. functions), one to draw a
square (top) and one to draw a triangle (bottom), and the script’s output is on the right.

Log Data Analysis: Snap! programming environment logs all
student code edits while programming (e.g. adding or deleting a
block), as a code trace, as well as the feedback system actions (e.g.
detecting the completion of a subgoal). This logging feature allows
us to detect all student steps, feedback system detections, as well as
the time taken for each step. We used students’ log data to (1) grade
student work manually, (2) inspect the accuracy of the systems’
feedback detections in Condition 2 and 3, and (3) analyze students’
code traces to illustrate student progress monitoring behaviors
with each interface. We also used log data to calculate a number of
measures of how students interacted with the scaffolds. Based on
themes that emerged in this aggregate analysis, we selected case
studies to present – some of which reflect the general trends in the
data, and some of which show less common student outcomes. We
used this log data analysis to answer RQ1 as explained in detail in
Section 5.

Interview Data Analysis: We transcribed the 17 interview
recordings containing 204 minutes of audio. Analysis was done
by four co-author coders, a team consisting of one professor and
three computer science graduate students, each with 2-4 years expe-
rience in conducting and analyzing data from related user studies.

Our qualitative analysis occurred in three rounds as in [33]: in-
ductive/open coding, and 2 rounds of deductive qualitative coding.
In the first round, we divided the first two interviews into unin-
terrupted student utterances, usually consisting of 1-2 sentences
(often called “segments”). Next, we independently analyzed the
segments and collaborated to resolve conflicts and define a code-
book. In round 2, we used the resulting codebook to tag the next
two interviews, discussing codes and resolving conflicts in 6/108
(5%) segments, updating the codebook with a total of 180 codes.
In round 3, two coders performed independent deductive coding
on the remaining 13 interviews, consulting the remaining team as
needed. Finally, one coder combined frequent codes that appear
in at least 5 segments into a set of themes: how each interface
was helpful/unhelpful, students’ preferences, and suggestions for
improvement. We then related these themes to each interview ques-
tion. We report these themes with example quotes from students, in
Section 5.4, to present students’ perceptions about each interface. In

our results, when reporting quotes from interview data we report
participants’ ID preceding their quote (e.g. [P1] means participant
1).

5 RESULTS
We organize our results around our two research questions. We first
analyze log data to investigate RQ1: how students enacted progress
monitoring when given a subgoal list (Section 5.1), adaptive feed-
back (Section 5.2), and even when they encountered unexpected
feedback (Section 5.3). We then use the interview data to address
RQ2, investigating students’ perceptions, in Section 5.4.

5.1 Providing Students a List of Subgoals
Our first method of investigating how students might have enacted
progress monitoring is by measuring the extent to which students
followed the subgoals presented by the list in each of the 3 inter-
faces, and to what extent they used this list for progress monitoring.
Our log data analysis showed that 16 out of the 17 students com-
pleted the subgoals in the exact same order as presented, and 12
of these students completed the programming task. Additionally,
in Condition 1, where students did not receive adaptive feedback,
our log data analysis showed that 5/6 students were checking off
subgoals when they decided they were complete. Together, these
results suggest that presenting students with a subgoal list may
help in promoting students’ progress monitoring by giving students
a clear plan they can monitor their progress towards, and an aid
for keeping track of that progress.

In addition, our log data analysis also suggests that such progress
monitoring may lead to improved performance. We found that the
16 students, who completed subgoals in order, spent an average
of 14.5 minutes until they stopped working on the task. This is in
contrast to what we found in prior work with other highschool
students working on the same task [26], where students, without
access to the subgoal list, solved the problem in a variety of unor-
ganized ways, spending at least double the time spent by students
in this study. While this was a different population, the extreme
differences in time, coupled with the different order of subgoals

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Marwan, Shabrina, Milliken, Menezes, Catete, Price, and Barnes

completed, suggest the subgoal list may have benefitted students.
Furthermore, when we investigated log data of the one student who
did not follow the subgoal list (who was assigned to Condition 1),
we found that they solved the problem in a complicated approach,
spending 421 code edits in ∼ 30 minutes, which is the maximum
time spent by all students in our study. When the interviewer asked
this student if they think the checklist is helpful, the student said:
“I jumped in there. I didn’t plan it out. I didn’t do any of that - I was
just like, Oh, this shouldn’t be too hard at all, and I’m midway, I just
realized I made a lot of mistakes. I should have spent more time plan-
ning than writing my code.” While this may suggest that embedding
the subgoal list in Snap! was not enough to capture this student’s
attention, these results show that providing students with a subgoal
list (i.e. a plan) may lead to improved performance as well.

Findings: These results suggest that providing students with a
subgoal list, even a non-adaptive one, seemed to be a helpful scaf-
fold that promoted students’ progress monitoring behavior. This is
evidenced by the fact that students followed the order of subgoals
in the list, showing that they paid attention to it, and also that
students checked off subgoals as they worked – a form of progress
monitoring. While we cannot say whether our participants would
do similar progress monitoring without the scaffolds, analyzing stu-
dent code traces from our prior study (as discussed above) suggest
that they do not follow a common process. Unlike the program of
the single student who ignored the subgoal list, those programs
written by the rest of students who followed the subgoal list were
more organized, understandable, and completed faster, showing
improved performance. These students felt the list “makes things a
lot easier cuz it sort of like laid out how you should do the program.
So instead of having to jump right in and come up with your own,
like method of doing it, you can just look at the [subgoals]” [P1].

5.2 Subgoal List with Completion and Progress
Feedback

One of our goals with Conditions 2 and 3 was to scaffold students’
progress monitoring by alerting them when their detected progress
changed, to encourage students to reflect on their progress at these
moments. Therefore, our second method of exploring how students
might have enacted progress monitoring is by investigating to what
extent students responded to progress feedback, and how they re-
acted, in both cases of positive feedback (completed subgoals) and
negative feedback (lost progress on a subgoal). In our log data anal-
ysis, in Condition 2 and Condition 3, we noted that when students
completed a subgoal which was detected by our feedback system,
10/11 students always moved on and started working on the sub-
sequent subgoal. We also noted that when the feedback reported
a decrease in progress after a student made an edit, most students
responded to the feedback by undoing the edit. This decrease in
progress was presented in Condition 2 and Condition 3 as broken
subgoals highlighted in red or decreased subgoal progress percent,
respectively. Specifically, under Condition 2, we found 7 cases when
a subgoal was broken while a student was solving the Draw Fence
task. In 6 of those 7 cases, students brought back the removed
blocks (that caused a broken subgoal) within 1-3 steps. In Condition
3, we found 22 cases when the progress of a subgoal decreased
by some amount, which is notably higher than that in Condition 2

because the progress feedback was more sensitive to every edit, and
not every decreased instance corresponded to breaking an entire
subgoal. In 15 of those cases (68.18%), the students reverted the
changes causing the decrease in progress within 1-4 steps. In the
other seven cases, the students ignored the detections. Six of those
cases occurred for the same student, Beth2. Ignoring the feedback
might indicate limited progress monitoring behavior, which can
lead to decreased performance. We present here a case study of
Beth, to explore how and why they ignored the feedback, and the
possible consequences of such behavior.

Case Study Beth: Ignoring decreased progress in Condi-
tion 3. Beth started their attempt by completing subgoal 1 and
added an ‘ask’ block to take user input for width/height of the fence
to be drawn. They added ‘move’, ‘turn’, and ‘pen down’ statements
which are required for multiple subgoals (e.g. to draw a square, or
a triangle). Beth then removed the ‘move’ and ‘turn’ statements,
decreasing subgoal 2 progress from 20% to 10%. They ignored or did
not notice this decrement, and did not bring the statements back
until making 17 additional unhelpful edits that did not show any
progress. Then, they brought back the ‘move’ and ‘turn’ blocks and
nested them in a ‘repeat’ block making progress towards subgoals
2 and 4. In the subsequent step, Beth removed the ‘move’ and ‘turn’
statements from within the ‘repeat’ block, decreasing the progress
of subgoals 2 and 4 from 65% to 35%, but this time they immediately
brought these blocks back. Later, Beth made several unhelpful ed-
its, repositioning code blocks that variably caused the progress of
subgoals 2 and 4 to decrease by 10%, and 80%, respectively. There
were a total of 10 cases of progress decreases found in Beth’s code
logs, but Beth only reverted the changes immediately in 4 of these
cases. In the other 6 cases, Beth did not revert the changes at all or
reverted after a significant number of edits. Beth failed to complete
the task within the allocated time.

During the interview, when we asked Beth what was helpful in
the feedback, they said: “I think it’s really helpful. The only thing
that kind of threw me off a bit is when I started, [the subgoal list]
shows progress in the triangles’ [subgoal] when I hadn’t started coding
the triangles yet. I was just a little confused”. This clarifies why
Beth might have decided to ignore the progress feedback. This is
interesting since it presents a case where the feedback was correct
but the student thought it was not. For context, using ‘pen down’
and ‘move’ blocks are needed to draw a triangle and that is why the
system showed increased progress in subgoal 4; however, since the
student was working on subgoal 2, this led to confusion about the
system. When the interviewer reminded Beth of how the system
worked and why it detected an increase in subgoal 4, Beth said:
“I feel like I would definitely trust it. I think that maybe something
that would have been a little helpful for me is knowing what you said
about how it calculates like the pen down. I think if I had known that
information before, I wouldn’t have been confused at all when I was
doing the programming.”

Findings: These results show that most students receiving feed-
back on subgoals mirrored that feedback (in both conditions), sug-
gesting that they were using the feedback to monitor their progress.
This is evidenced by the fact that students often fixed their edits
that led to decreased progress. Furthermore, in the interviews, all

2We provide students with random names for anonymity.

Promoting Students’ Progress-Monitoring Behavior during Block-Based Programming Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

students in Condition 3 mentioned that the incremental progress
feedback was helpful in letting them see their progress (though this
was not reported by 2/5 students in Condition 2, which we discuss
in Section 5.4). For example, [P7] said “it helps students see that they
are actually making progress even when they think that they’re not,
like if they’re totally stuck, just placing some blocks and then see that
Oh, I’m actually making progress towards this.” However, Beth’s case
shows that a lack of attention towards the feedback or frequently
ignoring the feedback may decrease its usefulness, which bolsters
suggestions in prior work [28, 37].

5.3 Students’ Role in Progress Monitoring
Our third method of exploring how students might have enacted
progress monitoring is by investigating whether students have en-
gaged in progress monitoring and reflection at moments when the
automated feedback system provided slightly early or late detec-
tion of subgoals. To perform this analysis, three co-author experts
collaboratively assessed student log data to detect precisely when
subgoals were completed. The three experts labeled 55 subgoals
(from 11 students in Conditions 2 and 3 with 5 subgoals each), as on-
time (54.3%) if they agreed with the system completion detection
timing, early (9%), if the system detected the completion of a sub-
goal slightly earlier than the expert (i.e. one or two edits before the
experts thought it was complete), or late (36.7%) otherwise. Next,
we analyzed student log data and documented student responses
to the slightly early and late detections to determine whether stu-
dent behaviors reflected their engagement in appropriate progress
monitoring.

In the 5 early detection cases in Conditions 2 and 3, none of the
student programs were working as intended. In all of these cases
students continued working until they achieved the desired out-
put, suggesting that the early detection feedback did not mislead
these students to believe that they had completed the subgoal. In
7 of the 9 late detection cases in Condition 2, and 10 of the 11 late
detection cases in Condition 3, students moved on to the next sub-
goal, deciding to override the late detection. These results suggest
that late detections, which comprised 36% of Condition 2 and 37.9%
of Condition 3 detections, only potentially negatively impacted 3
students, who continued working on the same subgoals even af-
ter a late detection. We illustrate the extent of potential negative
progress assessment on case study Kim, the student in Condition 3
who continued working on a subgoal that was already complete
but was detected late by the feedback system.

Case Study Kim: Impact of late detections while program-
ming. Kim started working on subgoal 1. Before completing it,
expert analysis shows that Kim completed subgoals 2, 3, 4, and 5
in order, in 9 minutes and 14 seconds. At this point, only subgoal
1 was incomplete (the user input was not used in the program);
but the feedback system showed 64% progress on subgoal 1, and
erroneously showed 55% progress on subgoal 5. Kim spent 5 minutes
and 51 seconds more making edits related to subgoal 5. Finally, Kim
made one edit to complete subgoal 1. However, subgoal 5 remained
undetected by the system until the end of Kim’s attempt.

During the interview with Kim, when we asked their opinion
about the feedback they received, they said: “it was really useful
because it was like step by step, so you really know like what to

work on first.” We then asked Kim how the feedback was helpful
or unhelpful in this task, and they said: “with the like percentages.
I knew how much I was progressing, like if I’m completely blocked.
For this particular program, I think drawing a series of triangles
(i.e. subgoal 5) didn’t really incorporate in my program as much as
like, since that’s why I didn’t like finish it.” It is clear from Kim’s
response that even after they started the interview they still thought
that they did not complete subgoal 5, although it was complete.
When the interviewer reminded them how the feedback system
works, Kim said: “I think maybe [it is] a little misleading. Once I
actually completed [subgoal 5], and I saw it was 55%, it made me
want to just figure out [what my code was missing] even though
like I could build the fence in the code was working properly.” The
interviewer then followed up by asking for suggestions on how
we could better communicate how the system works to students,
and Kim recommended: “I guess we can just clarify it [in] an info
button that explains what these subgoals do, and [that] if it’s not fully
completed, it’s fine.” Kim’s response suggests that we could remind
students how the feedback system works within the programming
environment.

Findings: Based on students’ code logs and this case study, we
conclude that students generally do not blindly follow feedback,
suggesting that feedback does prevent student progress monitoring.
Both log data and interview data show that most students assess
their progress when the system shows that it has changed, and
overrule the system if they disagree. This is further reflected from
the interviews, where students noted using the output of their
program, or their own knowledge to monitor their progress and
taking control by ignoring feedback that they did not agree with.
When asked about this, one student in Condition 2 stated “P2: I
guess it’s just like, other people did it differently or something
like that.” However, case study Kim cautions us that this feedback
system still needs refinement, as some students may need further
support to engage in effective progress monitoring.

5.4 Students’ Preferences across Interfaces
While the code data analysis and case studies pointed us to how well
and when the subgoals list, with or without adaptive feedback, can
promote students’ progress monitoring behavior, the interview data
complemented this analysis by emphasizing why the subgoal lists
were useful or not, and collect student preferences and suggestions
on how to mitigate these issues.

Through our thematic analysis, we found that the two main
design features perceived as useful by students are: breaking down
the task with a list of subgoals, and providing them with adaptive
progress feedback (not just completion). For example, [P1] stated
that the subgoals’ list “doesn’t tell you the exact steps on how
to do it, but it does give you the steps and then you can piece
them together, just like, figure out where everything should go.”
In addition, most students noted how it makes the task easier as
it gives them a plan, to tackle the solution, and guidance on how
to proceed, which satisfies the outcomes of the contiguity design
principle [32]. For Condition 3, all students perceived the progress
feedback as useful. For example, [P9] noted that: “the part where
it makes you most motivated is when you’re stuck, and then you do
something and then you see the percentage rise up and then you’re like,

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Marwan, Shabrina, Milliken, Menezes, Catete, Price, and Barnes

Oh, yeah, I’m getting somewhere.” It is interesting that presenting a
progress interface to students allows adaptive feedback not only to
help students to monitor their progress, but also to motivate them
when they feel stuck, reflecting the benefits of applying effective
feedback design choices [40].

When we asked students about the unhelpful aspects across the
3 interfaces, they noted a reoccuring theme of times when they
received unexpected feedback. For example, [P11] said: “it’s not
always 100% accurate like as you see my program works but it still
hasn’t checked off the last box, but [I] know why it did so, because
maybe [I] did the series of triangles in a different way.” However, it
was clear from their responses that students reasoned that their
solution strategy might be different from prior student solutions.
This emphasized that explaining how the system works promoted
students’ self-regulatory behaviors of reflection and progress moni-
toring.

When we asked students about which interface they prefer, and
why, 14/17 students suggested combining Condition 1 (the checklist)
and Condition 3 (progress feedback). For example [P13] said: “per-
sonally, if I was using it, I guess, I would like it to show my progress,
but also give me an option of, like checking it off.” . Additionally, all
students noted that they prefer Condition 3 over Condition 2, since
progress feedback made them feel more motivated to complete the
task, as in prior studies on progress feedback in the SQL Tutor
[30]. Additionally, some students in Condition 2 noted that, when
they did notice a subgoal being broken (turning red), it was hard
to determine which code edits broke the subgoal. This indicates
that the Condition 2’s completion feedback did not provide enough
specific feedback for some students.

6 DISCUSSION
RQ1:Howdo students enact progressmonitoringwhen given
scaffolds during block-based programming? Our qualitative
pilot study suggested three main results showing how our scaf-
folds’ designs can promote students’ progress monitoring behavior
during programming. First, we found evidence that visualizing a
subgoal list within a programming environment, whether it
provided adaptive feedback or not, provided a plan that stu-
dents followed, and used to monitor their progress through-
out their work. This is important, since prior work suggests that
determining how to start, and plan out the work, are two key pro-
gramming moments where negative self-assessments can occur for
novices [15]. Students’ interview responses revealed that providing
a subgoal list to be helpful during these important moments: [P7]“it
was definitely helpful because the first thing that you think is how
do I approach this problem? and what should I start with? Because
you’re starting with a blank screen. So it was definitely helpful to see
like, we’ve broken up the task into steps that you can follow.” We also
found that students used the subgoal list in planning as reflected
in students’ log data, where we found that all students except one
worked on the task subgoals in order, i.e. they used the list as a
plan.

Second, we found suggestive evidence that providing a sub-
goal list with either type of adaptive feedback (completion
or progress) promoted students’ progress monitoring. Loksa
et al. identified that a key part of students’ self-regulation during

programming is “to plan and evaluate progress toward writing a
program that solves some computational problem [22].” Our log
data analysis in Section 5.2 shows that students generally responded
to decreased progress feedback immediately (68-85% of the time),
probably by redoing the code edits they did before, or by using trial-
and-error strategies as suggested in prior work [10]. Regardless, this
suggests that the system successfully encouraged students to moni-
tor their progress leading to a higher performance. Additionally, our
results in Section 5.3 show that students were not simply relying on
the system’s assessments, but were ultimately monitoring their own
progress – overriding erroneous feedback. In 17/20 (85%) of late
detections, students moved on to the next subgoal appropriately,
rather than adding code to get higher completion feedback, and
no student failed to complete a subgoal that was detected early.
While Kim’s case study shows that some students were still misled,
indicating the importance of accurate feedback, our overall results
suggest that automated progress feedback supports, rather than
replaces, students’ own progress monitoring.

Third, we found evidence in our interviews that explaining
how the feedback system works, and why it may not align
with student expectations, supported students to reflect on
the feedback they received. While data-driven feedback systems
can be overall helpful to students [38, 44], this challenge of gen-
erating feedback that does not align with students’ expectations
is present in many of these feedback systems [36]. In this paper
we acknowledged this challenge, and we explored how to mitigate
its potential harm by improving students’ self-regulation skills of
progress monitoring and reflection on the feedback they received.
We prompted students to reason about the feedback by verbally
explaining that it was based on comparisons of their code to prior
student work. While research shows that student help seeking
behaviors can be quite sensitive to hint quality [37], our results
suggest that explaining how the systemworked helped promote stu-
dents to reason about the feedback. Additionally, all students using
interface 3 noted that adaptive progress feedback motivated them
to complete the programming task, even if some of the received
feedback does not match their expectations. These results confirm
Bodily et al.’s thoughts that exposing how the system works to
students would inspire confidence and learner self-regulation [3].

RQ2: What are students’ perceptions of and preferences
for such progress monitoring scaffolds? Measuring students’
perceptions is important to evaluate the success of any feedback
mechanism [20], and specifically important in shaping researchers’
design choices of feedback systems in the future. Our interview data
analysis showed that most students preferred to have the check-
boxes, in interface 1, to track their own assessment of their progress
along with adaptive progress feedback (i.e. combining interface 1
and interface 3). This thematic finding reflects learners’ need for
combining both human intelligence (i.e. deciding if a subgoal is
complete) and machine intelligence (i.e. automated detections of
students’ progress on each subgoal), which is a lacking feature in
automated feedback systems. Not only do we think that this com-
bined condition might motivate students to complete programming
tasks and mitigate the consequences of receiving unexpected feed-
back; but also it can improve students’ learning as suggested that
prompting students to reflect or self-explain what a solution step
means, is a constructive activity that engages students in active

Promoting Students’ Progress-Monitoring Behavior during Block-Based Programming Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

learning, while allowing them to monitor their understanding [5].
However, since these results are from a qualitative study, large
controlled studies are needed to confirm this effect.

7 LIMITATIONS
Like any study, this work has some limitations. First, our study
consists of a small population. However, the goal of our pilot study
is to explore how different scaffolds can promote students’ progress
monitoring behavior. Second, the interviews may reflect response
bias that may have led to more positive answers. To mitigate poten-
tial bias, we asked open-ended questions about both the positive
and negative aspects of the feedback design. Third, since the stu-
dents had a five-week experience in programming, they are likely
to possess both higher self-regulation skills and a higher ability to
understand when their code might appropriately differ from other
student solutions, when compared to students in an introductory
programming course. However, our sample was purposefully se-
lected to interview students who would be capable of reflecting on
their earlier programming experiences and what might have helped
them. During interviews, several students mentioned ways that our
feedback systems could be more helpful to beginners, such as pro-
viding, on-demand, step-by-step suggestions on how to complete a
subgoal. In addition, our prior work evaluated a feedback system
that has an interface similar to interface 2 with novice students,
who showed clear benefits from having completion feedback during
programming [26]. Fourth, our study is limited to one programming
task. However, the task includes several programming concepts (e.g.
loops, variables, and user-input) and requires complex nested struc-
tures making it very likely for students to have diverse solutions,
which our results confirm since 16 out of 17 students had different
solutions. Fifth, our study does not have a control group since our
goal from our qualitative study is to explore how interfaces with
different scaffolding levels can support students and promote their
progress monitoring while they program - not an experimental
comparison to show which feedback interface is best. Sixth, and
last, while students’ gender might have impacted their behavior
and perceptions about the interfaces, comparing genders was out
of scope from this paper because we had only 3 male participants.

8 CONCLUSIONS
In this paper, we conducted a qualitative study with 17 high-school
students to explore how three subgoal-tracking interfaces can pro-
mote students’ progress monitoring skills during programming: 1- a
checklist, with no feedback, 2- completion feedback and 3- progress
feedback. We found that breaking down a task into a list of sub-
goals provided students with a plan that helps them to monitor
their progress, and adaptively showing to students their progress
(interface 3) promoted student progress monitoring. We also found
that explaining how the feedback is generated might have helped
students to reason about the feedback, and ignore it when it did
not match their expectations. Our interview data suggests that it is
important to design adaptive learning environments that inform
students about their progress, while enabling them to record their
own self-assessment that reflects their perceptions of whether a
subgoal is complete. In future work, we plan to evaluate an interface
that combines interface 1 with interface 3, and evaluate its impact
on students’ outcomes in a large-scale study.

REFERENCES
[1] Michael Ball. 2018. Lambda: An Autograder for snap. Technical Report. Electrical

Engineering and Computer Sciences University of California at Berkeley.
[2] Brett A. Becker, Kyle Goslin, and GrahamGlanville. 2018. The Effects of Enhanced

Compiler Error Messages on a Syntax Error Debugging Test. (2018).
[3] Robert Bodily, Judy Kay, Vincent Aleven, Ioana Jivet, Dan Davis, Franceska

Xhakaj, and Katrien Verbert. 2018. Open learner models and learning analytics
dashboards: a systematic review. In Proceedings of the 8th international conference
on learning analytics and knowledge. 41–50.

[4] Susan Bull, Abdallatif S Abu-Issa, Harpreet Ghag, and Tim Lloyd. 2005. Some
Unusual Open Learner Models.. In AIED. 104–111.

[5] Michelene TH Chi. 2009. Active-constructive-interactive: A conceptual frame-
work for differentiating learning activities. Topics in cognitive science 1, 1 (2009),
73–105.

[6] Lindy Crawford and Leanne R Ketterlin-Geller. 2008. Improving math program-
ming for students at risk: Introduction to the special topic issue. Remedial and
Special Education 29, 1 (2008), 5–8.

[7] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper.
2012. Mediated transfer: Alice 3 to java. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. 141–146.

[8] Barbara Di Eugenio, Davide Fossati, Stellan Ohlsson, and David Cosejo. 2009.
Towards explaining effective tutorial dialogues. InAnnual Meeting of the Cognitive
Science Society. 1430–1435.

[9] Roberta E Dihoff, Gary M Brosvic, Michael L Epstein, and Michael J Cook. 2004.
Provision of feedback during preparation for academic testing: Learning is en-
hanced by immediate but not delayed feedback. The Psychological Record 54, 2
(2004), 207–231.

[10] Yihuan Dong, Samiha Marwan, Veronica Catete, Thomas W. Price, and Tiffany
Barnes. 2019. Defining Tinkering Behavior in Open-ended Block-based Pro-
gramming Assignments. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 1204–1210.

[11] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying
computer science self-regulated learning strategies. In Proceedings of the 2014
conference on Innovation & technology in computer science education. 291–296.

[12] Davide Fossati, Barbara Di Eugenio, STELLAN Ohlsson, Christopher Brown, and
Lin Chen. 2015. Data driven automatic feedback generation in the iList intelligent
tutoring system. Technology, Instruction, Cognition and Learning 10, 1 (2015),
5–26.

[13] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71–79.

[14] Nuno Gil Fonseca, Luís Macedo, and António José Mendes. 2018. Supporting
differentiated instruction in programming courses through permanent progress
monitoring. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. 209–214.

[15] Jamie Gorson and Eleanor O’Rourke. 2020. Why Do CS1 Students Think
They’re Bad at Programming? Investigating Self-Efficacy and Self-Assessments
at Three Universities. In Proceedings of the 2020 ACM Conference on Interna-
tional Computing Education Research (Virtual Event, New Zealand) (ICER ’20).
Association for Computing Machinery, New York, NY, USA, 170–181. https:
//doi.org/10.1145/3372782.3406273

[16] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-driven feedback: Results from an experimental study. In Proceed-
ings of the 2018 ACM Conference on International Computing Education Research.
160–168.

[17] Luke Gusukuma, Dennis Kafura, and Austin Cory Bart. 2017. Authoring feedback
for novice programmers in a block-based language. In 2017 IEEE Blocks and
Beyond Workshop (B&B). IEEE, 37–40.

[18] I-H Hsiao, Sergey Sosnovsky, and Peter Brusilovsky. 2010. Guiding students to
the right questions: adaptive navigation support in an E-Learning system for
Java programming. Journal of Computer Assisted Learning 26, 4 (2010), 270–283.

[19] David E Johnson. 2016. ITCH: Individual Testing of Computer Homework for
Scratch Assignments. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, New York, NY, 223–227.

[20] Samad Kardan and Cristina Conati. 2015. Providing adaptive support in an
interactive simulation for learning: An experimental evaluation. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM,
New York, NY, 3671–3680.

[21] Vive Kumar, Philip Winne, Allyson Hadwin, John Nesbit, Dianne Jamieson-
Noel, Tom Calvert, and Behzad Samin. 2005. Effects of self-regulated learning
in programming. In Fifth IEEE International Conference on Advanced Learning
Technologies (ICALT’05). IEEE, 383–387.

[22] Dastyni Loksa and Andrew J Ko. 2016. The role of self-regulation in programming
problem solving process and success. In Proceedings of the 2016 ACM conference
on international computing education research. 83–91.

https://doi.org/10.1145/3372782.3406273
https://doi.org/10.1145/3372782.3406273

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Marwan, Shabrina, Milliken, Menezes, Catete, Price, and Barnes

[23] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J
Mendez, and Margaret M Burnett. 2016. Programming, problem solving, and self-
awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI conference
on human factors in computing systems. 1449–1461.

[24] Lauren Margulieux and Richard Catrambone. 2017. Using learners’ self-
explanations of subgoals to guide initial problem solving in app inventor. In
Proceedings of the 2017 ACM Conference on International Computing Education
Research. 21–29.

[25] Samiha Marwan, Anay Dombe, and Thomas W. Price. 2020. Unproductive Help-
seeking in Programming: What it is and How to Address it?. In The Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science
(ITiCSE’20). ACM, New York, NY.

[26] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes. 2020.
Adaptive Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science. In Proceedings of the International
Computing Education Research Conference (forthcoming).

[27] Samiha Marwan, Joseph Jay Williams, and Thomas W. Price. 2019. An Evaluation
of the Impact of Automated Programming Hints on Performance and Learning.
In Proceedings of the 2019 ACM Conference on International Computing Education
Research. ACM, 61–70.

[28] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas W. Price. 2019.
The Impact of Adding Textual Explanations to Next-step Hints in a Novice Pro-
gramming Environment. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, 520–526.

[29] Samiha Marwan, Thomas W Price, M. Chi, and Tiffany Barnes. 2020. Immediate
Data-Driven Positive Feedback Increases Engagement on Programming Home-
work for Novices. In Educational Data Mining in Computer Science Education
(CSEDM) Workshop @ EDM’20.

[30] Antonija Mitrovic and Brent Martin. 2007. Evaluating the effect of open student
models on self-assessment. International Journal of Artificial Intelligence in
Education 17, 2 (2007), 121–144.

[31] Antonija Mitrovic, Stellan Ohlsson, and Devon K Barrow. 2013. The effect of
positive feedback in a constraint-based intelligent tutoring system. Computers &
Education 60, 1 (2013), 264–272.

[32] Roxana Moreno and Richard E Mayer. 1999. Cognitive principles of multimedia
learning: The role of modality and contiguity. Journal of educational psychology
91, 2 (1999), 358.

[33] Alannah Oleson, Meron Solomon, and Amy J Ko. 2020. Computing Students’
Learning Difficulties in HCI Education. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, 1–14.

[34] Thomas W Price, Yihuan Dong, and Tiffany Barnes. 2016. Generating Data-
Driven Hints for Open-Ended Programming. International Educational Data
Mining Society (2016).

[35] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
ACM Technical Symposium on Computer Science Education. ACM, New York, NY.

[36] Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven
programming hint generation algorithms. International Journal of Artificial
Intelligence in Education 29, 3 (2019), 368–395.

[37] Thomas W. Price, Zhongxiu Liu, Veronica Catete, and Tiffany Barnes. 2017.
Factors Influencing Students’ Help-Seeking Behavior while Programming with
Human and Computer Tutors. In Proceedings of the International Computing
Education Research Conference. ACM, New York, NY.

[38] Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017. Hint Generation Under
Uncertainty: The Effect of Hint Quality on Help-Seeking Behavior. In Proceedings
of the International Conference on Artificial Intelligence in Education.

[39] R Keith Sawyer. 2005. The Cambridge handbook of the learning sciences. Cambridge
University Press.

[40] Mary Catherine Scheeler, Kathy L Ruhl, and James K McAfee. 2004. Providing
performance feedback to teachers: A review. Teacher education and special
education 27, 4 (2004), 396–407.

[41] Dale H. Schunk. 1995. Self-efficacy, motivation, and performance. Journal
of Applied Sport Psychology 7, 2 (1995), 112–137. https://doi.org/10.1080/
10413209508406961 arXiv:https://doi.org/10.1080/10413209508406961

[42] Preya Shabrina, Samiha Marwan, Min Chi, Thomas W Price, and Tiffany Barnes.
2020. The Impact of Data-driven Positive Programming Feedback: When it Helps,
What Happens when it Goes Wrong, and How Students Respond. In Educational
Data Mining in Computer Science Education (CSEDM) Workshop @ EDM’20.

[43] Valerie J Shute. 2008. Focus on formative feedback. Review of educational research
78, 1 (2008), 153–189.

[44] Daniel Toll, Anna Wingkvist, and Morgan Ericsson. 2020. Current State and Next
Steps on Automated Hints for Students Learning to Code. In 2020 IEEE Frontiers
in Education Conference (FIE). IEEE, 1–5.

[45] Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, and Thomas W.
Price. 2020. Crescendo: Engaging Students to Self-Paced Programming Practices.
In To be published in the 51st ACM Technical Symposium on Computer Science
Education (SIGCSE ’20). ACM, New York, NY.

[46] Philip H Winne and Allyson F Hadwin. 2013. nStudy: Tracing and supporting
self-regulated learning in the Internet. In International handbook of metacognition
and learning technologies. Springer, 293–308.

https://doi.org/10.1080/10413209508406961
https://doi.org/10.1080/10413209508406961
https://arxiv.org/abs/https://doi.org/10.1080/10413209508406961

	Abstract
	1 Introduction
	2 Related Work
	3 Feedback System and Interface Design
	3.1 Adaptive Feedback System
	3.2 Three Interface Designs

	4 Methods
	5 Results
	5.1 Providing Students a List of Subgoals
	5.2 Subgoal List with Completion and Progress Feedback
	5.3 Students' Role in Progress Monitoring
	5.4 Students' Preferences across Interfaces

	6 Discussion
	7 Limitations
	8 Conclusions
	References

