
Unproductive Help-seeking in Programming: What it is and
How to Address it

Samiha Marwan
samarwan@ncsu.edu

North Carolina State University

Anay Dombe
anay.dombe15@vit.edu

Vishwakarma Institute of Technology

Thomas W. Price
twprice@ncsu.edu

North Carolina State University

ABSTRACT
While programming, novices often lack the ability to effectively
seek help, such as when to ask for a hint or feedback. Students
may avoid help when they need it, or abuse help to avoid putting
in effort, and both behaviors can impede learning. In this paper
we present two main contributions. First, we investigated log data
from students working in a programming environment that offers
automated hints, and we propose a taxonomy of unproductive help-
seeking behaviors in programming. Second, we used these findings
to design a novel user interface for hints that subtly encourages
students to seek help with the right frequency, estimated with a
data-driven algorithm. We conducted a pilot study to evaluate our
data-driven (DD) hint display, compared to a traditional interface,
where students request hints on-demand as desired. We found
students with the DD display were less than half as likely to engage
in unproductive help-seeking, and we found suggestive evidence
that this may improve their learning.
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1 INTRODUCTION
Providing students with feedback serves as an essential element of
learning theories [32, 41]. Traditionally, feedback comes from an
instructor, but with the growing enrollment in Computer Science
(CS) classes [5], researchers put extensive effort in developing pro-
gramming environments to provide automated feedback to students
for the same purpose. Several studies showed that this feedback,
like simple test-case feedback [7, 18], or hints suggesting a single
edit to proceed [15, 39] can increase students’ performance and
learning [11, 17, 22]. However, this positive impact requires the
student to use help effectively, which is a difficult metacognitive
skill [2]. Despite the prevalence of automated help in programming
classrooms [11, 24, 39], little prior work has investigated how to
encourage students to seek and use this help more effectively.
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A large body of work in mathematics tutoring systems sug-
gests that students’ unproductive use of help features is a serious
challenge [3, 4, 36]. For example, Aleven et al. showed that 72%
of students’ actions in a Geometry tutoring system represented
unproductive help-seeking behavior, such as avoiding help when
they needed it or abusing help to speed through the assignment
[4]. Further, unproductive help-seeking predicts poor learning out-
comes [2, 6], suggesting that students need additional guidance on
how and when to use help. A naive approach might be to limit the
amount of help provided (e.g. give no more than 3 hints). However,
previous studies show that students with different prior knowledge,
need different amounts of help: “ the lower the prior knowledge,
the higher the need for assistance” [19, 45]. Therefore, not only is
it important to encourage students to effectively seek help, but it is
also important to tailor the amount of help to their performance
[37]. In programming environments, to design such guidance, we
first need to understand how students engage in help-seeking in
computing classrooms, which is unclear from prior work. To our
knowledge, prior work has been limited to analyzing survey data
[42], or characterizing students’ motivations for seeking and avoid-
ing help [34]. More work in the programming domain is needed to
identify the specific ways that students unproductively seek help,
to guide instructors and inform the design of feedback interfaces
to address these behaviors.

In this work, we investigate the following research questions:
RQ1) What specific forms of unproductive help-seeking do novices
engage in when programming? RQ2) How can the design of a help
interface improve students’ help-seeking behavior? To address RQ1,
we investigated log data, capturing real students’ use of hints during
independent programming homework and we propose a prelim-
inary taxonomy of novices’ unproductive help seeking behavior.
Similar to Aleven et al. [2], we found the majority of students en-
gaged in some form of unproductive help-seeking, avoiding or abus-
ing it. To address RQ2, we designed a novel system for displaying
adaptive hints. It uses a data-driven (DD) algorithm to encourage
students to ask for help, based on their progress compared to prior
students. We conducted a small pilot study to compare students’
help-seeking behavior when working in a programming environ-
ment with our DD display, compared to a traditional on-demand
hints display (i.e. hints provided upon students’ request). We found
students in the DD display condition never abused help and were
less likely to unproductively avoid it, compared to students in the
on-demand condition. We also found suggestive evidence that this
improved behavior may translate into learning, but further work is
needed to verify this. In addition, despite the DD display limiting
students’ ability to use help, students perceived it to be at least as
helpful as the on-demand display, and they noted its intelligence in
providing hints only when they need it.
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2 RELATEDWORK
Prior work suggests that automated feedback can be an effective
means of improving students’ performance and learning when
used appropriately. For example, Corbett et al. found students who
received automated feedback in their ACT programming tutor per-
formed better on a post-test than those without feedback [11].
Similarly, Marwan et al. found that students with access to adaptive
hints performed better on subsequent tasks than a control group,
though only when students were asked to self-explain the hints
[22]. However, Aleven et al., noted that students generally lack
the ability to seek help effectively, which obstructs the ability of
learning environments with feedback to improve students’ learning
[2]. Therefore, in this section we review models of how students
seek help, different ways that learning environments display help,
and how this impacts students’ help-seeking and learning.

Help-seeking is defined as a meta-cognitive skill represented
in the ability of students to solicit help from a teacher, peer, or
other sources [2]. Meta-cognitive skills are essential for learning
[12], and have been strongly linked to students’ performance in CS
[9, 10]. Many help-seeking models are based on Nelson-Le Gall’s
help-seeking theory that states steps needed for a student to seek
only the amount of help needed to complete a task, known as in-
strumental help-seeking [29, 30]. Reflecting Nelson-Le Gall’s and
Newman’s help-seeking theories [29, 31], Aleven et al., presented
the first help seeking model (HSM) for a computer-based learning
environment (Geometry Cognitive Tutor) [2]. However, the HSM
depends on estimates of students’ prior knowledge which is hard to
assess for novices in programming. Also, it is unclear how to apply
HSM in programming as the model features are specific to their Ge-
ometry tutor features. In programming, Vaessen’s et al., developed
a Discrete Markov Model (DMM) to detect students’ help-seeking
strategies in a functional programming tutor. Their model predicted
these strategies based on students’ self-reported achievement goals,
which make their model context-specific [42]. In a qualitative study,
Price et al. identified factors affecting students’ help seeking in
programming problems, providing a baseline to consider when de-
signing models for help-seeking [34]. Based on prior work, this
paper took a first step to define what is unproductive help-seeking
from students’ step-by-step interactions during programming in an
authentic classroom setting, which can be generalized to different
programming environments.

Several classroom studies, adopting Nelson-Le Gall and Newman
help-seeking theories [29, 31], found that students who need help
are the least likely to ask for it [19, 35, 45]. In computer-based envi-
ronments, these results motivate researchers to explore the effect
of different help displays on students’ help-seeking and learning.
Most learning environments provide on-demand help, i.e. providing
help upon students’ request, like Andes (physics tutor) [43], As-
sisstments [36], and ITAP [39]. Prior work shows that on-demand
help can improve students’ learning [2, 38] because it is better to
give students control over requesting help [36]. However, they do
not prevent students’ help abuse. For example, students may keep
requesting hints, i.e. gaming the system, to finish tasks faster, with-
out understanding the reason behind the hint. In an algebra tutor,
Baker et al. found that help abusers learn only 2/3 as much as other
students [6]. To address help abuse, Murray et al., studied delaying

help when students request it, as cognitive tutors suggest that de-
laying help reduces help requests and improves students’ learning
[26]. Murray et al. found that delaying help eliminated help abuse;
but does not affect learning. They also found the number of hints
received was negatively correlated with students’ post-test scores,
similar to other studies in different domains [22, 25].

In addition to abusing on-demand help, avoiding help has been
shown as a second serious unproductive help-seeking behavior that
negatively correlates with learning [2, 3]. For example, Baker et al.,
using students’ log data in a Genetics Cognitive Tutor, found that
help avoidance is negatively associated with students’ performance
on a transfer test [13]. To address help avoidance, researchers al-
lowed tutors to provide help proactively, e.g. automatically after
a student makes a number of errors. Several studies, in the math
domain, compared the effect of on-demand help versus proactive
help on students’ learning. Murray et al. found that proactive help
can be more effective for some students because it can save time
when a student is floundering, and provides valuable information
at a time when the student is motivated to learn it [27]. In the CS
domain, Corbett et al., found that students who received immediate
feedback (similar to proactive feedback) in the ACT programming
tutor finished exercises faster than those who received on-demand
one, particularly in harder exercises [11]. Conversely, Razzaq et al.
found that students learned significantly more from on-demand
hints over proactive ones in a math tutor [36].

Despite the amount of work done to evaluate students’ help-
seeking behavior in several domains, far less work has been done in
programming [11]. Research in programming tutoring environ-
ments mainly focuses on how to develop automated feedback;
rather than how to display it and how students ask for it. Per-
haps this is the reason why there are only a few studies that found
an impact of programming feedback on students’ learning [15, 22].
For example, Rivers in her Ph.D. thesis on ITAP, a Python tutor,
found that the percentage of students requesting hints ranged from
26.9% - 53%, and therefore the impact of ITAP’s help might not be
clear due to the large number of students who avoided using help
[39]. In this paper, we developed a novel data-driven display for
hints combining advantages of both proactive and on-demand help
display to improve students’ help-seeking behavior, and it can also
be deployed in different programming environments as described
in Section 4.4.

3 STUDY 1: DEFINING UNPRODUCTIVE
HELP-SEEKING IN PROGRAMMING

The goal of this study is to address our first research question: What
specific forms of unproductive help-seeking do novices engage in
when programming? From this study, we propose a preliminary
taxonomy of unproductive-help seeking in programming, which
informs the design of a new hint display, presented in Section 4.1.

3.1 Method
To explore how students in authentic classroom settings unproduc-
tively seek help, we looked at how all students (n = 50) used hints
during two homework assignments in an introductory computing
course for non-majors in a public university in the United States1.
1We did not have access to students’ demographic information.
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In the first part of this course, students were studying block-based
programming by solving exercises from the BJC curriculum [16].
The first homework is called “Squiral”, and the other one is called
“Guessing Game 2”. In Squiral, students write a procedure that takes
three parameters (R, L, and T) to draw a square-like spiral where
the spiral has R rotations, of side length L and side thickness T.
In Guessing Game 2, the program should generate a random se-
cret number within a provided range and ask the user to guess
this secret number, keeping track of how many guesses the user
has made. The two exercises together required the use of loops,
variables, conditionals, procedures and lists.

Students programmed their homeworks in iSnap [33], which is an
extension to the block-based Snap! programming environment that
provides on-demand hints. These hints suggest an edit a student can
make to bring their code closer to the correct solution. iSnap also
logs all students’ interactions during programming (e.g. creating,
or deleting a block) as a trace, allowing researchers to replay all
of a student’s steps in this trace. Students produced an average of
351 and 740 edits, on Squiral and Guessing Game 2, respectively.
To capture students’ authentic help-seeking behavior, we focused
on homework assignments, where students work independently
and typically use automated help, rather than instructor help. By
studying students’ log data, we can observe their behavior without
influencing it (an instructor’s presence might deter some types of
help abuse). While log data has some limitations, its analysis has led
to substantial research insights in computing education [2, 14, 39].

We applied a mixed-methods approach to identify and categorize
types of unproductive help-seeking in our log data. Two researchers,
one of whom had extensive experience analyzing students’ log data
in iSnap, started off by reviewing prior work on taxonomizing help-
seeking behavior [2]. Afterwards, the two researchers analyzed
students’ log data through a 3-phase method, adapted from Dong
et al. [14]: (1) Phase 1: Initial Definition: the two researchers inde-
pendently, manually inspected half of the Squiral log data, initially
focusing on students’ hint requests. They noted the time taken to
view each hint, whether the student followed the suggestion in the
hint, and the relationship between hint requests. The researchers
used this data to identify initial categories of unproductive help-
seeking, and discussed these categories to produce initial definitions.
(2) Phase 2: Consensus: the two researchers divided the second half
of the first homework into two sets and each tagged students’ data
with the initial definitions. Finally, both researchers resolved their
disagreements and discussed their findings with two other Snap! in-
structors who have previous research experience with help-seeking
behavior, and then they refined their definitions accordingly. (3)
Phase 3: Verification: the two researchers divided the second home-
work into two sets, and each tagged a set by the resulted categories
they defined in the previous phase. Neither researcher identified
any new behaviors beyond those defined in Phase 2.

3.2 Results and Discussion
We organized our results into a preliminary taxonomy of novices’
unproductive help seeking in programming. As in prior work, we
found that help abuse and help avoidance are the two main forms of
unproductive help-seeking behavior; however, we further refined
these into subcategories, which reflect distinct, but not mutually

exclusive, cases of these behaviors. We compare our results to
Aleven et al.’s Help Seeking Model (HSM), discussed in Section 2.

Help abuse: the behavior of asking for too much unnecessary
help. Based on our data we categorized it into three subcategories:

1- ImmediateHelp: Students who exhibit this behavior request
hints before beginning to program a task or objective on their own.
For example, some students started their homework by clicking
on the help button, and this often predicted high reliance on hints
throughout the assignment. This suggests students are deliberately
“gaming the system” [6], which will likely obstruct learning. When
investigating help seeking in the Geometry tutor, Aleven et al. argue
that an initial help request can be legitimate for students who have
no idea where to start. However, Ko et al. suggest that for novice
programmers, these “design barriers” are best addressed with more
comprehensive help, such as examples, which is rarely provided by
automated help [21]. Therefore, we argue that attempting to use
low-level feedback in this case constitutes help abuse.

2- High Frequency: In this behavior, students request and con-
sistently follow a high number of hints in a very short time (e.g.
five hints in one minute). While this may accompany Immediate
hint requests, it can happen at any time during the assignment.

High Frequency behavior is very similar to the help abuse form
“clicking through hints” in the HSM, where a student moves to the
next hint before spending enough time with the current one [1].
However, in novice programming “clicking through hints” might
not always be hint abuse. Because programming problems have vast
solution spaces [39], there are many relevant hints a system could
provide, and novices may need to viewmany of them before finding
a relevant one [23]. Therefore, our definition and tagging distin-
guished between students who viewed many hints and followed
them, versus those who simply viewed many hints and followed
one.

3- Unneeded Help: In this behavior, students ask for repeated
hints, despite having demonstrated an ability to progress indepen-
dently. For example, some students completed half of the solution
successfully with little-to-no hint usage, and then switched to rely-
ing almost exclusively on hints, sometimes even destroying all their
original code. Unlike the first two categories of abuse, whether a
hint request constitutes Unneeded Help depends on the student
and their current progress.

This behavior is similar to the help abuse form “Ask hint when
skilled enough to try a step” in the HSM; however, the HSM defined
it based on estimating students’ prior knowledge [2], which is hard
to measure for novices, especially in programming. We assumed
students are skilled if they were making adequate progress but then
decided to rely on hints without trying.

Help avoidance: this is when students fail to ask for hints when
struggling and a hint could help them move forward. While our
trace data allowed us to identify instances of help avoidance in an
authentic homework setting, it did not give us clear insight into
students’ motivations for avoiding help. Therefore, we discuss two
broader categories of help avoidance and discuss them in the light of
prior work that investigated factors affecting students’ help-seeking
in a laboratory study [34].

1- No Use: Some students spent a long time with unproductive
work with no help requests. For example, one student programmed
Squiral iteratively, i.e. as a series of "move" and "turns" without
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Table 1: Percent of students tagged with each help-seeking
category from the Taxonomy in Study 1: HW1 and HW2,
and Study 2: data-driven (DD) vs. on-demand (OD) display.

HW1 HW2 DD OD

Abuse
Immediate help 8% 15.21% 0% 0%
High-freq. 20% 21.73% 0% 0%
Unneeded help 24% 32.60% 0% 20%

Avoidance Stopped Use 16% 4.34% 26.66% 13.33%
No Use 14% 23.91% 0% 33.33%
Productive 42% 26.08% 73.33% 33.33%

using any variables or loops, making a total of 40 blocks. This
solution is inefficient and does not match the grading rubric since
the student is not using parameters. However, the student did not
request a single hint. Prior work suggested that this behavior might
be because students wanted to be independent, or they were not
aware of the help button[34], which suggests the need for a hint
display interface that reminds students to ask for a hint.

2- Stopped Use: In a given homework, some students requested
hints at the beginning, and then stopped doing so, even when they
struggled. Some students even submitted their code incorrectly
without asking for help again. Prior work shows that some students
may have found their initial hints to be uninterpretable [23] or
untrustworthy [34], and therefore avoided requesting more help.

Because this taxonomy reflects specific unproductive help-seeking
behavior inferred from students’ log data, it makes it applicable
to design programming environments’ interfaces that can deter
this behavior. While we describe these behaviors in terms of hints
in our data, we argue they generalize to other forms of help (e.g.
enhanced compiler messages [8], and misconception feedback [17]).
Table 1 shows the percentages of each unproductive help-seeking
category detected from students’ data. From Table 1, we found
58% and 74% of students’ help-seeking behavior is unproductive, in
Squiral (HW 1) and Guessing game 2 (HW 2), respectively. These
alarming results motivated us to design an interface for displaying
hints to moderate students’ help-seeking based on our taxonomy.
While this taxonomy reflects the same broad categories of help
abuse and avoidance in prior work [2], it also defines more specific
subcategories, where each inform classroom instruction and the
design of help interfaces. For example, while High Frequency abuse
can be addressed by limiting the frequency of hint requests, this
will not address many forms of Unneeded Help.

Our results have two important limitations. First, they are based
on only two assignments in a single environment with hints, though
our findings’ close alignment with prior work suggests they will
likely generalize to other classrooms and forms of help. Second,
while our use of log data captured authentic help use, it limited
our ability to infer students’ motivations, especially for help avoid-
ance. However, our results represent a novel contribution to the
computing education literature, as our taxonomy is the first to de-
fine unproductive help seeking behaviors, grounded in real data,
focusing explicitly on programming classrooms. Also, our results
can directly inform the design of novel help systems, as discussed
in Section 4.1.

4 STUDY 2: IMPROVING HELP-SEEKING
This study addressed our second research question: How can the
design of a help interface improve students’ help-seeking behav-
ior? To provide a solution to this question, we designed a novel
Data-Driven (DD) display for hints (described in Section 4.1) to
address the unproductive help-seeking behavior defined in Study 1.
In addition, we conducted a pilot study to evaluate the impact of
our display on students’ a) help-seeking behavior, b) learning, and
c) perceptions of the helpfulness of the programming environment.

4.1 Design of Data-Driven (DD) Display
We designed a novel hint display in iSnap to address each category
in the two high level problems we identified, help abuse and help
avoidance. A primary finding of Study 1 is that both help abuse and
help avoidance can be defined – and addressed – with respect to
the student’s progress, rather than simply based on the frequency
of help requests. Higher levels of help may be appropriate for some
students and not others (e.g. “the lower the prior knowledge, the
higher the need for assistance” [19, 40]). Thus, a key feature of our
hint display is a way to measure a students’ progress over time,
and whether it represents a need for help. We do so using a data-
driven (DD) approach, that measures the average time taken by
prior students to complete each objective (e.g. “draw a shape”) of
the same task. We then measure a students’ progress in real time
and compare it to the average of prior students – if they have taken
longer than expected to complete a given objective, we assume
they may need help. Our DD approach does not rely on expert
judgements of how long each objective should take, which can be
biased by the expert blindspot [28]. We use an autograder, as is
common in many programming environments [7, 18, 44], to assess
objective completion. We use this DD progress measure to adapt
when and how the hint display offers help, addressing both help
abuse and avoidance.

For help-abuse, our primary hypothesis is that we can address all
its three categories using our DD approach by restricting students
to request hints only when they are taking longer than expected on
a given objective. This addresses “Immediate Help," and partially
addresses “Unneeded Help,” since students cannot ask for hints
until they have attempted an objective for some time. To address
“High Frequency” hints abuse, we also added a 2-minute “cooldown”
on hints, deriving the following rule: At any time that a student is
taking longer than expected on their current objective (based on the
DD mechanism), they accumulate one hint every two minutes, which
they can request whenever they want. For example, if the system
detects student Alice is not progressing on Objective 1, then she
will be able to ask for a hint. If she still does not progress, she
will get another hint two minutes later. If she does progress, then
she won’t get another one until the system detects she has fallen
behind on Objective 2. Note that we chose the 2-minute threshold
based on our review of log data in Study 1, but we make no claim
that is generalizable. It is preferable to be adjusted based on the
instructor’s choice.

For help avoidance, to address the first category “No Use”, we
wanted to make the hints more salient, and remind students to
use them without taking away students’ sense of control [36]. To
do so, whenever a student accumulates a hint, meaning they have
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Figure 1: Example of a next-step hint given by iSnap. When
the HINT button (left) is clicked, a hint is shown (right).

fallen behind and may need help, the system pops up a flashing
hint button (as shown in Figure 1), embedded in students’ code, as a
subtle reminder. The student can still choose when and whether to
click on the button and view the hint, combining the advantages of
proactive and on-demand hints displays [27, 36]. For the second help
avoidance category “Stopped Use”, we did not focus in this work
on improving hint quality. However, one possible way to address
this behavior is to provide hints only when students need them,
using the DD mechanism. As Murray et al. suggested, providing
hints proactively (in our case it is just proactive reminders), may
give students information at times they really need it [27], perhaps
motivating them to open it.

4.2 Method
Population: Because it is hard to assign students into different
learning conditions in a real classroom (i.e. issues of fairness, differ-
ent students seeing different interfaces), we recruited undergradu-
ate students from an introductory engineering course at the same
university for our study. As in our classroom population, these
students had not taken any prior programming course and there-
fore, we assumed they had minimal experience. We also allowed
students to take the study independently, online, as in a homework
setting, through a web interface that led them through each pro-
cedure step. We compensated participants with a $10 gift card to
encourage broader participation. Our population included 30 stu-
dents (16 males; 14 females). All students were 18-20 years old and
in their first year. Their intended majors were Engineering (n = 21),
Biology (n = 5), CS (n = 2), and undecided (n = 2).

Programming Tasks: In this study, students were asked to
solve two tasks, the first one with the hints and the second without
the hints. Because wewanted to explore help-seeking under varying
levels of difficulty, we designed three different tasks (A, B and C),
each using similar programming concepts but having increasing
difficulty. We assigned half of the students to take task A, then task
B, and the other half took task B, then task C. Task A asked students
to take an input number n and draw a polygon with n sides. In Task
B, students were asked to take an input n and draw a strip of n
triangles. Task C asked students to draw a series ofn “daisy squares,”
a geometric design made of overlapping squares. Our goal with
varying the difficulty was to create scenarios where students would
need more or less help, allowing us to test the adaptive levels of help
provided by the DD display. However, we did not control for tasks’
difficulty in our analysis. We used data from a prior experiment
using tasks A and B to train the timings for the DD display.

Procedure: Students first took a short presurvey and read through
a tutorial about the block-based programming environment (iSnap)

that focused on the programming concepts needed for the study
tasks (e.g. loops, and drawing), using both text and short anima-
tions. We randomly assigned half of the students (n = 15) to have
access to on-demand hints and the other half to use our new DD
hint display (n = 15)2. Based on student’s condition, the tutorial
described how iSnap can offer help to them when needed. Students
were then given up to 15 minutes to complete programming Task
1, and iSnap provided them with hints based on their condition.
Afterwards, they had 15 minutes to complete Task 2, this time with-
out hints, which we use as a measure of learning transfer. After
each programming task, students took a post-task survey, where
they were asked some questions on their experience and the hints
provided (on Task 1).

4.3 Results and Discussion
RQ2a:What is the impact of the DD display on students’ help-seeking
behavior? To understand whether the DD display reduced unpro-
ductive help-seeking, two researchers, who were blind to students’
conditions, tagged each student with any form of help abuse or
avoidance defined in the Taxonomy in Section 3.2.We report the full
results in Table 1. In the on-demand condition, researchers tagged
7 (46.66%) as help avoiders, and 3 (20%) as help abusers, while in
the DD display condition, researchers tagged 4 (26.66%) as help
avoiders and 0% as help abusers. This suggests that the DD display
cuts incidence of help avoidance in almost half and prevents help
abuse altogether. For comparison, we combined these behaviors
into a single attribute indicating unproductive (1) or productive (0)
help use. A Fisher’s exact test shows that the difference in unproduc-
tive help use across the two conditions is not significant (p = 0.14)3
but had a moderate effect size (odds ratio = 3.92). The effect of our
DD display may have been reduced by the tasks being too easy to
necessitate much hint use: we found that 46.6% of students who
asked for little or no hint still finished Task 1 successfully. The
effect size suggests the DD display had a meaningful impact on
students’ help-seeking behavior, but our small sample size makes it
unclear how well these results would generalize.

We then investigated how well our DD display encouraged stu-
dents to ask for an appropriate number of hints, as defined by its
own algorithm. We compared the number of hints suggested by
the algorithm and the number of hints opened by students (for the
on-demand condition, we simulated the DD algorithm on students’
data, since they did not have the DD display). We found a much
stronger correlation between the number of hints recommended
by the algorithm and the number of hints opened by students in
the DD condition (r = 0.79), than that in the on-demand condi-
tion (r = 0.31). This confirms that students’ natural help-seeking
behavior (in the on-demand condition) does not align with the
algorithm’s estimate of their help needs, but that the DD design
succeeded in shaping students’ help use. However, some students
in the DD condition did still avoid help (27%). Manual investigation
shows that these students were offered hints but chose not to click
the hint button, sometimes after seeing a potentially confusing hint.

2We assigned the same number of students in each condition to each pair of tasks and
so the tasks difficulty was equivalent for both conditions.
3We report statistical tests, along with effect sizes, to help the reader better interpret
our results. However, as this was pilot study with a small sample, these tests are only
likely to detect large effects and should be interpreted cautiously.
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RQ2b: How does the DD display impact students’ learning? We
chose to measure students’ performance on each task using the
total time taken to complete the task, since 50% of students in
both conditions successfully finished both tasks. If a student did
not finish a given task, we recorded their time as 15 minutes (the
maximum allowed for each task). We found students in the DD
display condition took longer to finish Task 1 (M = 10.99;Med =
12.33) than those in the on-demand condition (M = 8.98; Med =
9.42), but a Mann-Whitney U test4 shows the difference was not
significant, with a medium effect size (p = 0.24 ; Cohen’sd = −0.47).
Interestingly, we found that time taken to finish Task 2 (without
hints) showed the reverse: students in the on-demand condition
spent longer (M = 10.55; Med = 12.23) than those in the DD
display condition (M = 8.94;Med = 7.38), but the difference is not
significant (p = 0.41; Cohen’s d = 0.33).

Based on these findings, we calculated how much students’ per-
formance improved from Task 1 (with hints) to Task 2 (without
hints): Task 2 time - Task 1 time. We found that students in the
DD display condition decreased their time from Task 1 to Task 2
(M = −2.03;Med = −2.57), while those in the on-demand condition
increased their time (M = 1.57;Med = 2.16), and A Mann-Whitney
U test shows the difference was significant, with a large effect size
(p = 0.02; Cohen’s d = 0.85). Together, these results suggest that
on-demand display helps students more on the problem where they
are available (short-term performance), but the DD display seems
more likely to improve later performance without hints (i.e. learn-
ing). However, we are cautious in interpreting this result, since, as
stated above, the overall impact of the DD display on students’ Task
2 performance was positive but not significant.

One possible explanation for this difference would be that stu-
dents in the on-demand condition simply asked for more hints on
Task 1, improving their performance on Task 1 but not Task 2.
However, we found that the students in the DD condition actu-
ally opened more hints (M = 3.06; Med = 3) than the on-demand
condition (M = 1.8; Med = 1), and the difference was significant
(p = 0.04; Cohen’s d = 0.59). We also found that students interacted
with hints differently in the two conditions. Students in DD display
kept hints open for significantly more time (M = 21.10;Med = 19)
than students in the on-demand condition (M = 17.70;Med = 10). A
Mann-WhitneyU test shows this difference is significant (p < 0.01;
Cohen’s d = 0.23). These results suggest that providing hints only
at times when students are assumed to need them, allows them to
process hints better [27], which affected their performance in Task
2. In addition, these results confirmed our hypothesis that timing
the hints on students’ needs can eliminate help abuse categories.

RQ2c: What are students’ perceptions of the helpfulness of both
hint displays? As Kardan et al., noted “Success of any adaptive
support mechanism highly depends on the users’ perception of its
quality” [20], and measuring students’ perceptions is lacking in
most help-seeking literature. It seems possible that students would
not perceive the DD display to be as helpful as the on-demand
one, since it does not give them as much control over when they
receive hints. To measure this, we asked students in the Post Task 1
survey “On a scale from 1 to 10, how helpful was iSnap overall?”. We
found that students in the DD group rated iSnap at least as helpful

4We used non-parametric tests because the data was not normally distributed.

(M = 7.36; Med = 8) as students in the on-demand condition
(Mean = 6.23;Med = 7.5). This suggests no evidence that deploying
DD design in the programming environment was perceived as less
helpful than that with traditional on-demand help.

Moreover, when we asked students in the DD group to elaborate
on why they gave this rating, students noted that hints just popped
up at the right time “every time I got lost there was a hint.” [P1].
Other students felt the hints were adaptive to their code “It seemed
to let me try to figure things out for a minute then tell me when I
couldn’t get it.” [P7]. In Post Task 2 survey, when we asked students
if hints they received in Task 1 helped in Task 2, 92% of the students
noted that the hints helped them to progress in Task 2 because “the
code [in Task 2] required me to use similar blocks that I had learned
in the past task.” [P5], and others mentioned specific concepts
they had learned from the hints, e.g. “when the hints from task 1
explained how I have to rotate my pen at certain times, it helped me
do the same during task 2. [P4]”. Also, we did not find any comment
that showed that students needed more help, which suggests that
using the DD display, students did not notice their indirect lack of
control on requesting help at any time.

4.4 Limitations and Broader Implications
We note three limitations to our findings. First, some of our results
were inconclusive due to the small sample size. Also, our tasks may
have been too easy, since 26.6% of students completed Task 1 in 8
minutes (although they claimed having no programming experi-
ence). However, the goal of this work was to identify unproductive
help-seeking behavior in programming and explore how the DD
display can improve that behavior, and our results suggest potential
for it to do so. Second, while the varying difficulty of the program-
ming tasks might have affected the results, we found no significant
difference in help-seeking or performance between students with
different tasks. Lastly, we had no pre-test, and some of our results
could be explained by our two conditions having different levels of
prior knowledge, despite being randomly assigned.

Overall, in this paper, we have three main contributions: 1) a
preliminary taxonomy of novices’ unproductive programming help-
seeking behavior, which inspired us to (2) develop a data-driven
(DD) adaptive display for hints to improve students’ help-seeking,
and (3) we conducted a controlled pilot study to evaluate the impact
of the DD display on students’ help-seeking behavior. Our results
show promise for how the DD display could improve students’ help-
seeking behavior and possibly their learning, without reducing
the perceived usefulness of the system. Also, our DD display for
hints can be deployed in other programming environments that
log students data and provide any type of feedback. We do note
that our DD design does require an autograder for testing student’s
code in real time to monitor their progress through the assignment,
but these are commonly available in programming environments
[7, 18, 44]. Our system has implications for any classroom, whether
or not automated help is available, since a similar system could also
remind students to ask for help from instructors, peers, or message
boards. In future work, we plan to replicate Study 2 on a large-scale
population to verify the effect of DD display on performance and
learning, and further explore the relation between help-seeking
and different feedback types.
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