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ABSTRACT
Automated hints, a powerful feature of many programming envi-
ronments, have been shown to improve students’ performance and
learning. New methods for generating these hints use historical
data, allowing them to scale easily to new classrooms and contexts.
These scalable methods often generate next-step, code hints that
suggest a single edit for the student to make to their code. How-
ever, while these code hints tell the student what to do, they do
not explain why, which can make these hints hard to interpret
and decrease students’ trust in their helpfulness. In this work, we
augmented code hints by adding adaptive, textual explanations in
a block-based, novice programming environment. We evaluated
their impact in two controlled studies with novice learners to in-
vestigate how our results generalize to different populations. We
measured the impact of textual explanations on novices’ program-
ming performance. We also used quantitative analysis of log data,
self-explanation prompts, and frequent feedback surveys to evalu-
ate novices’ understanding and perception of the hints throughout
the learning process. Our results showed that novices perceived
hints with explanations as significantly more relevant and inter-
pretable than those without explanations, and were also better able
to connect these hints to their code and the assignment. However,
we found little difference in novices’ performance. Our results sug-
gest that explanations have the potential to make code hints more
useful, but it is unclear whether this translates into better overall
performance and learning.
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1 INTRODUCTION
Introductory programming courses often have high attrition and
failure rates, with pass rates estimated as low as 68% [6, 38]. As such,
there is a growing evidence to suggest that novice programming
students need additional support [7, 37]. This is especially true in
large classrooms and MOOCs, where instructors cannot interact
with every student [17, 21]. To address this, researchers have de-
veloped intelligent systems for automatically generating support
for students during programming [2, 13, 16, 31], such as hints and
feedback, which have been shown to improve students’ learning
outcomes [8, 9]. These systems often offer next step, edit-based
hints, which suggest an edit that a student should make to bring
their code closer to a correct solution [10, 28]. Data-driven systems
can generate these next-step hints automatically using historical
students’ data [31, 34], rather than with expensive expert models
(e.g. [24]), allowing them to scale easily to new classrooms and
contexts. These next-step hints are powerful as they can support
students during program construction, and automatically adapt to
the student’s current code to support different student solutions.
However, these data-driven, next-step hints generally show only
what to do, not why. Previous work has shown this lack of expla-
nations can make next-step hints difficult for novices to interpret
and connect to their current code [29], leading to a decrease in how
often students request and follow hints, and eroding their trust in
the system [29, 32].

In this paper we introduce a straightforward method for gener-
ating textual explanations to accompany automated, next-step pro-
gramming hints. We implement this feature in iSnap [28], an exten-
sion of the block-based Snap! programming environment [12, 14],
which offers on-demand, data-driven, next-step hints. These hints
are generated adaptively to respond specifically to a student’s cur-
rent code. We refer to these hints as code hints, since they show
only the code that should be changed. We designed the textual
explanations to connect these code hints to the programming ex-
ercise objectives and explain the functionality of the suggested
blocks. Previous work suggests that these explanations could im-
prove novices’ programming outcomes, but that novices do not
always read such explanations [11]. We therefore evaluated the
impact of adding these textual explanations to code hints in iSnap
through two controlled experiments with different populations.

In Experiment 1, we conducted a controlled study on novices
in an introductory programming course for non-CS majors. We
studied the effect of adding textual explanations to code hints, and
found promising trends across multiple exercises, suggesting that
explanations may increase students’ willingness to use and follow
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the hints. However, as in previous work [1, 28], the majority of
students did not use hints, so our sample size was small, and our
results were inconclusive. To investigate further, we conducted a
second experiment with crowd workers recruited on Amazon’s Me-
chanical Turk platform, which has been suggested as an appropriate
alternative to university participants [5, 19]. This experiment al-
lowed us to recruit a larger number of learners, collect fine-grained
survey data, and give learners different, uneven levels of support –
all of which were infeasible in our first classroom experiment. In
addition to analyzing learners’ final outcomes, as in previous work
[35], we make empirical analysis using log data, self-explanation
prompts, and frequent feedback surveys to understand learners’
understanding and perception of the hints throughout the learning
process. Both experiments studied novices with little-to-no pro-
gramming experience. We find learners who received code hints
with textual explanations rate these hints as significantly more
useful, and were more likely to follow these hints which shows
similar trend to Experiment 1. In addition, learners who received
textual explanations were also significantly more likely to explain
the relationship between the received hints, their code and the
assignment objectives. However, we found no significant difference
in the two groups’ programming performance.

In Experiment 1, we investigated 2 research questions: How does
adding textual explanations to code hints impact (1) The perceived
usefulness of hints? (2) The hints’ request rate?. In Experiment 2, due
to the fewer restrictions in this study, we collected surveys to better
investigate RQ1 and investigated 2 more research questions: How
does adding textual explanations to code hints impact (3) Learners’
performance on the current and future programming assignments?
(4) Learners’ ability to self-explain the relationships between the code
hints to their own code and the assignment?

In summary, the contributions of this work are: (1) A system
that combines the scalability of adaptive, next-step programming
“code hints” with textual explanations1. (2) An exploratory study
suggesting that these explanations may increase students’ willing-
ness to follow code hints. (3) Evidence suggesting that adding these
textual explanations to next-step hints increases their perceived
usefulness, and learners’ ability to explain the purpose of the hints.

2 RELATEDWORK
Many educational programming systems provide automated, con-
textualized support to novices during problem solving. This support
can greatly improve learning outcomes [11]. For example, Corbett
et al. [9] showed that students who received various forms of feed-
back while using the system completed subsequent programming
assessment in significantly less time with significantly fewer errors.
Two common means of this automated support are next-step hints
[25, 28, 31] and feedback hints [13, 23]. Next-step hints suggest
a specific edit that a student should make to their code to make
progress towards a solution, which can be presented through tex-
tual instructions [34] or a visual demonstration of the suggested
edit [28] (see Figure 1). Automated, next-step hint generation is a
rapidly growing area of research, and researchers have developed a
variety of techniques, including data-driven approaches [27, 31, 34],
program synthesis [26, 36], and automated program repair [39].

1iSnap’s demo, datasets and source code are available at http://go.ncsu.edu/isnap.

Prior evaluations of next-step programming hints suggest that they
may increase students’ immediate performance, but the results
were inconclusive due to low rates of hint-usage [32, 33]. This low
rates of hint-usage might be due to the hints’ lack of explanation
and interpretability [28, 29].

Feedback hints offer students expert-authored help messages,
often in response to specific errors in student code. For example,
SQLTutor [23] and INCOM [20] are tutoring systems that use a
constraint-based model to provide feedback hints to students when-
ever a constraint is violated. Unlike next-step hints, the feedback
provided by these systems usually comes after students submit
their code. However, in an evaluation of the Lambda Autograder
[3], which offers such feedback, students mentioned they prefer
feedback for each step rather than general feedback at the end. In
[15], Head et al. proposed a system that allows teachers to write
reusable feedback for programming exercises in Python. In this
study, teachers expressed how useful the system was in saving time
in grading. However, they mentioned that some students might still
need more individualized feedback on their code. In this work, both
textual explanations and code hints are adaptive to students’ code
and can be provided at any time during programming.

One challenge with evaluating automated support, such as next-
step hints and feedback messages, is that these supports are usually
part of larger programming systems, and researchers often evaluate
these systems as a whole, without singling out specific support
features to better understand them [18]. For example, Gerdes et
al. evaluated their programming tutor, Ask-Elle [13], and its adap-
tive support through questionnaires. This methodology may be
insufficient at analyzing the real impact of these hints on student’s
behavior during programming because they focus more on stu-
dent’s opinion and not their actual behavior. In this study, we isolate
the impact of one specific element of support – textual explanations
– to evaluate it directly. Another common way of evaluating these
systems in literature is by checking students’ performance when
solving exercises with support [16, 28]. However, improved perfor-
mance with support does not necessarily imply improved learning,
since hints and feedback often give the student part of the correct
solution [4]. In this paper, we address these issues in two ways: (1)
by evaluating student performance on future tasks as a measure of
learning (2) by using self-explanations as an alternative technique
to measure the impact of hints on students’ knowledge [22].

3 DESIGN OF AUTOMATED TEXTUAL
EXPLANATIONS

We designed automated textual explanations hints for iSnap, a
block-based novice programming environment that provides stu-
dents with on-demand, data-driven code hints during programming
[28]. iSnap extends Snap!, which is used by thousands of students
in “The Beauty and Joy of Computing" AP Computer Science Prin-
ciples classes [12]. iSnap’s hints are generated by the SourceCheck
algorithm that uses a database of correct student solutions for a
given problem [31]. SourceCheck matches the current code of a
hint-requesting student to the nearest correct solution in the data-
base and suggests edits that will bring the student closer to that
solution. Students request hints on iSnap by clicking a Check My
Work button, after which their code is annotated with multiple hint
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buttons, each corresponding to a contextual hint generated based
on their current code [28]. When a student clicks on the hint button,
a hint window is shown suggesting a single edit to students’ code,
such as inserting a code element as shown in Figure 1.

Each of SourceCheck’s next-step hints suggest a code block that
students can add. That block comes from a correct solution in
SourceCheck’s database, corresponding to a node in that solution’s
abstract syntax tree (AST) [31].We generate textual explanations for
a given problem in iSnap by first identifying all common AST nodes
in the database of solutions, such as the “pen down” block shown
in Figure 1. We then manually annotate each of these solution AST
nodes with a textual explanation for the corresponding hint. Note
that in the experiments presented in this paper, we used expert-
authored solutions, rather than student solutions, to generate the
hints, as this has been shown to produce higher-quality hints [32],
but our approach could be applied to either.

Figure 1: A next-step hint with textual explanation in iSnap.
The student’s code is shown in the top-left (red box), with
suggested code hint in the top-right (green box), annotated
with a textual explanations (blue box).

In a programming exercise that asks students to draw a polygon,
if a code hint is shown visualizing the need to use the “pen down”
block (needed for drawing), the textual explanation in this case will
be: “Using the “pen down” block under Pen, makes the sprite draws a
trail behind it when it moves, which should happen before you draw
a polygon” as shown in Figure 1. Our textual explanations were
authored to provide 3 types of information to the student: (1) where
can they find the relevant block “Using the pen down block under
Pen” ; (2) the functionality of this block “makes the sprite draws a
trail behind it when it moves” ; and (3) why this block should be
used in the correct solution “which should happen before you draw a
polygon”. We related the functionality of the block to the assignment
objectives, as our prior work suggested this was a point of difficulty
for many students in understanding hints [29]. For the experiments
described in this work, the last author, who is familiar with the
assignments and classroom context, wrote the textual explanations,
including the three types of information described above.

4 EXPERIMENT 1: CLASSROOM STUDY
In our first, exploratory experiment, we investigated the impact of
adding textual explanations to code hints in a classroom context.

We investigated our research questions by focusing on how expla-
nations impacted students’ willingness to request and follow hints.
Previous work has shown that this is a good proxy for perceived
hint quality and usefulness [32].

4.1 Population and Procedure
The study was conducted during an introduction to programming
course for non-majors in a research university during Fall 2018. Be-
fore the first exercise, a researcher explained iSnap’s hint interface
to students and encouraged them to use it whenever they needed
support. There was no limit to the number of hints students could
request, and iSnap reminded students about the hint feature at the
beginning of each exercise. Our experiment was conducted on 2
in-lab exercises, where students could request help from under-
graduate teaching assistants (TAs), and on 1 homework exercise,
completed independently. Since students could request help from
TAs during in-lab assignments and almost all complete the home-
work correctly, we do not analyze the quality of their programming
performance in this experiment (though we do so in Experiment 2).
The total number of students was 45, and all students completed
their work using iSnap.

The students were randomly assigned into two groups: Group
A (GA) and Group B (GB ). Our experiment has a crossover design,
so that both groups had access to textual explanations at different
times. For the first two tasks, GA received code hints with textual
explanations, while GB received only code hints, but for the third
task2, GA was given only code hints, while GB was given both
textual explanations and code hints. As shown in Table 1, only
15-21 students requested hints on any assignment.

4.2 Measures and Results
We used 2 measures to understand the impact of textual explana-
tions on the perceived usefulness and quality of hints. We first
looked at the number of hints requested by students in each con-
dition. As shown in the “H” columns of Table 1, there was no
consistent trend across exercises. Students who did ask for hints
in both groups seemed to ask for similar numbers of hints. The
second measure we looked at was the hint follow rate (FR), or the
average number of hints followed by each student. We defined a
hint as “followed” if a student created the suggested block in that
hint before receiving a new one. As shown in the “FR” columns of
Table 1, the group with textual explanations had a higher average
follow rate across assignments (approaching 100% in the homework
exercise), ranging from 12 to 25 percentage points. These results
suggest that students who received textual explanations with their
hints were more convinced to follow the hints.

Looking more closely at which hints were followed and not, we
can see how explanations may impact students’ follow rate. Remem-
ber, for any assignment, there are a fixed number of unique, possible
hints (each corresponding to one code block). When shown to a
student, these hints are adapted to their current code (i.e. showing
where to add the block). There were 9, 10 and 14 unique possi-
ble hints on the three exercises, respectively. A given hint may be
shown to different students, and a student may view the same hint

2This was also true for a fourth task, but due to a power outage, we were unable to
collect data for this task.
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Table 1: Experiment 1Results: For each exercise, the number
of students who requested any hints (n), the mean number
of hints requested (H), and the mean hint follow rate (FR). ∗
indicates the group which received textual explanations.

Lab 1 Homework 1 Lab 2
n H FR n H FR n H FR

G∗
A 11 9.27 0.53 7 5.7 0.95 G∗

B 5 10 0.70
GB 10 7.27 0.56 8 6.25 0.70 GA 10 9.90 0.47

multiple times. We say a hint has been ignored if at least one student
received it and chose not to follow it. For students who received
code hints only, the number of unique, ignored hints were 7/9, 6/10,
8/14 for the 3 exercises respectively. However, for students who
also received textual explanations, the number of unique, ignored
hints were 3/9, 1/10, and 5/14, respectively. This suggests that
while many different kinds of code hints were ignored by students,
when these hints are accompanied by explanations, only a few hints
are ever ignored. We hypothesized that these few ignored hints
may have had inadequate explanations, which were confusing or
hard to act on. For example, in the second exercise the only hint
that was not followed byGA was “Each time your code repeats, your
sprite should draw one side of the polygon", which explains the code
hint that suggested the addition of the “move forward" block.

4.3 Discussion
Our results suggest that textual explanations can serve their in-
tended purpose of improving students’ ability to understand and
follow hints. Students with textual explanation were more likely to
follow the hints they received. With explanations, most hints were
followed anytime they were seen, which was not true for hints with-
out explanations. While this exploratory analysis suggests some
promise for textual explanations, our data consists of only a few
students. Though trends were consistent across 3 exercises, we
cannot make strong conclusions from these results. One limitation
of this experiment is that students were allowed to request hints
on demand, and, as shown in previous studies, students who most
need support often do not ask for hints when they need them [1, 28].
We therefore can only study a subset of the students of interest.
It is worth noting that the first and third exercises were in-lab,
where students might have had additional support from instructors,
possibly affecting how they used hints.

To get a better understanding of why some hints were not fol-
lowed, we manually inspected each hint that was not. We found
two potential reasons. First, some students requested a hint and
then immediately closed it and requested another (without doing
any additional edits to their code), repeating this process until ei-
ther they stopped requesting hints or followed one. This is possible
because iSnap displays multiple hint suggestions at a time for differ-
ent parts of a student’s code. This behavior suggests that sometimes
students were looking for help in a specific part of their code and
ignored hints for other parts, resulting in a decreased follow rate.
The second reason, as noted earlier, is that some of the unfollowed
hints with textual explanations may not have had the clearest ex-
planations. In our future studies we plan to rephrase them or add
the option of having more than one textual explanation for the

same code hint in the hope of making these explanations more
understandable and effective for novices.

5 EXPERIMENT 2: CROWDWORKERS
Based on promising but inconclusive results of Experiment 1, we
designed Experiment 2 to overcome some of its limitations by re-
cruiting larger population, providing hints pro-actively (instead of
on-demand) and collecting surveys and self-explanations on the
hints to better understand their impact on learners’ understanding
and their perceived usefulness. Experiment 2 aimed to answer the
following research questions: How does adding textual explanations
to code hints impact: (1) Learners’ perceived usefulness of the hints?
(2) Learners’ performance on the current and future programming
assignments? (3) Learners’ ability to self-explain the relationships
between code hints, their own code and the assignment?

5.1 Population and Procedure
In this experiment, our learners consisted of crowd workers who
were recruited from Amazon’s Mechanical Turk platform which
has been discussed to be as effective form of conducting large-scale
user studies as using university participants [5, 19]. All learners
reported that they had no prior programming experience, though
we did not collect any further demographic information. We paid
learners $4-7 to complete the study (varying the amount to increase
speed of recruiting). The data were collected as part of a larger study
on the effect of different types of hint support which included 209
learners. We focus on a subset of that data relevant to our research
questions about the impact of adding textual explanations to code
hints, which included just 92 learners. We also excluded 4 of them
from our study: 2 learners did not write any code, 1 learner finished
the exercise before receiving the first hint and the last one gave
meaningless self-explanations (discussed below), leaving a total of
88 learners in our analysis.

During the study, learners completed a programming task (de-
tailed below), during which they were provided with some form of
automated help. All 88 learners received code hints. Of these, 48
were randomly assigned to receive textual explanations with their
code hints (group GT ), while the other 40 received only code hints
(group GC ). Additionally, approximately half of the participants
were randomly assigned to self-explain each received hint, and we
use this data in our evaluation, as explained below. Learners started
the study by reading a short tutorial on block-based programming
in iSnap for 5 minutes3. The tutorial explained how to use iSnap’s
user interface as well as all the programming concepts needed for
the programming task. These concepts included input/output, loops,
operators and drawing shapes, which were all explained by text and
short animated videos. Afterwards, learners started to work on a
programming task for 15 minutes. The programming task involved
drawing a polygon based on the number of sides the user inputs.

During programming, iSnap interrupted the learners every two
minutes and provided them a hint according to their condition (e.g.
showing a code hint) because we wanted rich data about multiple
hints, rather than biased sample when learners request it and to
avoid the limitations in Experiment 1 as well. After receiving the

3We provided only a short time for the tutorial, since our goal was to study how
students learned hints while programming.
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hint, iSnap asked them for their thoughts on the action (Post-help
survey). The 2 minute action timer restarted after learners finished
the post-help survey, giving them 2 more minutes of work before
being interrupted again. The 15minute timer was not paused during
these surveys, though they were identical across conditions. While
offering help proactively, as we did in this study, is less common
than offering on-demand help, however, results from a pre-help sur-
vey (not analyzed in this paper) showed that learners desired help
the vast majority of the time when it was given. After 15 minutes,
learners were stopped and then worked on a second programming
task (Task 2) for 15 minutes. Task 2 asked them to create a program
that draws a strip of triangles, with the number of triangles given
by the user. This task uses similar programming concepts as Task
1, but is slightly more advanced. Unlike Task 1, every 2 minutes
learners were given a random hint independent of their condition
in Task 1. We found that each learner received 2-5 hints during each
task, varying depending on how long they took on the pre-help
and post-help surveys, and whether there was a reasonable hint.

5.2 Measures
We collected 3 types of data relevant to this analysis: log data, post-
help survey responses, and self-explanations. To measure learners’
performance, we divided each programming task into 4 objectives
(e.g. “ask the user for input and use it correctly”, “draw a shape,”
etc.). Finishing all the objectives correctly is equivalent to success-
ful completion of the task. We developed an automatic grader to
determine which objectives learners have completed, and manually
verified these grades for approximately half of participants. After
each hint, iSnap asked learners 4 questions in the Post-help survey
to rate the support they received (e.g. code hints). These 4 questions
measured: (1) Usefulness: How useful were the action(s) that iSnap
just took?, (2) Relevance: How well did this hint address what you
were working on or stuck on?, (3) Progress: How well did this hint
help you progress towards a correct solution?, (4) Interpretability:
How easily could you interpret the meaning of this hint?. We based
questions 2-4 on a rubric for rating hint quality [32]. In addition,
we measured the hints’ follow rate, which is the average of hints
followed by each learner, by auto-inspecting learners’ log traces to
know if they really have followed the hint or not.

Approximately half of participants (19 in GT and 21 in GC ) re-
ceived a self-explanation prompt after each hint with a randomized
prompt (e.g. “How would you use this hint?", “Why do you think
Snap recommended this hint?"). We used their responses to measure
learners’ ability to explain the purpose of the hints, evaluating a
total of 125 self-explanations. Two researchers familiar with the
task used a yes/no rubric to independently assess whether learn-
ers’ self-explanations connected their hints to their: (1) Current
Code: Is the explanation related to the learner’s current code situa-
tion? ; (2) Programming Concepts: Does the explanation show that
the learner has learned anything related to programming concepts? ;
(3) Assignment: Does the explanation show how the hint can help the
learner in his assignment?. The two researchers blindly rated learn-
ers’ self-explanations, i.e. without knowing the learner’s condition
(e.g. received code hints). The two researchers divided the first half
of the self-explanations answers into 3 rounds for rating each of
the 3 questions. After each round, conflicts were discussed and

resolved. We calculated Cohen’s kappas for each question in each
round, where 9 kappas ranged from 0.724 to 1, indicating substan-
tial agreement. Afterwards, the second half of the self-explanations’
answers was divided between the two researchers for grading.

5.3 Results
Hints’ perceivedusefulness and follow rate.Weaveraged learn-
ers’ responses in the Post-help Survey across Task 1 to assign one
rating per question to each learner. As shown in Table 2, we com-
pared average ratings between GT learners and GC learners. We
used Mann-Whitney U tests here, as in the remainder of this sec-
tion, as our data were non-normal. We found that GT learners
rated iSnap’s help as significantly more useful (p = 0.021), rele-
vant (p = 0.030) and interpretable (p = 0.018) than GC . Learners
in GT also rated the hints as more effective in helping them to
make progress; however, the rating differences were not significant
(p = 0.109). In addition, we found that the learners’ hint follow rate
was higher in GT than GC , as in Experiment 1. However, despite
a medium effect size (Cohen’s d = 0.38) this difference was not
significant (p = 0.137).

Learners’ Performance. We compared number of objectives
that learners completed during Task1 (with hints determined by
their condition) and in Task2 (with randomized help, independent
of their condition). As shown in Table 2, we found no significant
difference in the number of objectives completed by each group
in Task1 (p = 0.66) or in Task2 (p = 0.28). One simple way we
hypothesized the textual explanations might improve learners’ per-
formance is by helping students to locate code blocks, since this
information was included in the explanation. We identified all hints
that asked the learner to find and create a new code block, where
the learner correctly followed this hint (before receiving another
hint). For each learner, we calculated the average time they took to
create these blocks. However, the difference in this average time for
learners inGC (Med = 28.1) andGT (Med=24.5) was not significant
(p = 0.57).

Learners ability to self-explain the relationships between
code hints, their own code and the exercise’s objectives. For
learners who received self-explanation prompts after receiving
hints, we rated their self-explanations, as described in Section 5.2.
For each learner, we determined the percentage of their self-explanations
which connected the received hint to : 1) their current code (Current
Code), 2) correct programming concept(s) (Programming Concepts),
and 3) the objective(s) of the programming assignment (Assign-
ment). As shown in Table 3, we found that these percentages were
much higher in GT than GC . A Mann-WhitneyU Test shows that
this difference is statistically significant for the first and third ques-
tions (p = 0.020, p = 0.057, p = 0.023).

5.4 Discussion
Our results suggest that textual explanations can improve code
hints by increasing how useful, relevant and interpretable learn-
ers perceive them to be (RQ1) and learners’ ability to self-explain
the hints (RQ3). There is also some evidence that the explanations
increase learners’ willingness to follow hints, as suggested by Ex-
periment 1, though the difference was not significant. This suggests
that, despite concerns raised in prior work [11], learners did in fact
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Table 2: Experiment 2 Results. The table gives Mean (M), Standard Deviation (SD) and Median (Med) for both groups, with the
p value for comparison using a Mann-Whitney U test, and effect size, Cohen’s d .

Interpretability Relevance Progress Usefulness Follow Rate Task 1 Perf. Task 2 Perf.
M SD Med M SD Med M SD Med M SD Med M SD Med M SD Med M SD Med

GT (48) 8.24 2.24 9 8.31 2.12 9 7.90 2.59 9 8.28 1.91 9 0.75 0.31 0.87 2.31 1.32 2 2.15 1.46 2
GC (40) 7.53 1.82 7.22 7.46 2.13 8 7.47 1.97 7.1 7.36 2.21 7.91 0.62 0.39 0.7 2.15 1.52 2 2.48 1.35 2
p 0.018 0.03 0.109 0.021 0.137 0.665 0.288
d 0.34 0.39 0.18 0.44 0.38 0.11 0.23

Table 3: Self-Explanations Results in Experiment 2. For
each question, Mean (M), Standard Deviation (SD) and Me-
dian (Med) with the p value for comparison using a Mann-
WhitneyU test, and effect size, Cohen’s d .

Current Code Prog. Concepts Assignment
M SD Med M SD Med M SD Med

GT (19) 0.52 0.42 0.5 0.29 0.34 0.25 0.35 0.35 0.33
GC (21) 0.22 0.28 0 0.12 0.27 0 0.12 0.27 0
p 0.020 0.057 0.023
d 0.852 0.55 0.73

read explanations and derive some benefits. Interestingly, despite
these advantages, there is no evidence that textual explanations im-
proved learners’ performance on the current or future tasks (RQ2).
In prior analysis of this data, we did find that learners with code
hints (without textual explanations) performed better on Task 1
than those with no hints [30]. This suggests that code hints do
improve learners’ immediate performance, but our results indicate
that the textual explanations did not contribute to this improve-
ment. It is interesting that learners’ increased ability to relate hints
to programming concepts suggests a type of learning, but this did
not translate into improved performance. This may be because,
even with textual explanations, learners still only related 29% of
hints they received to programming concepts on average.

Regarding the design of the textual explanations, recall that our
goal was to provide the learner with 3 types of information: block’s
functionality, why it is needed in the given assignment, and the
location of the block. Our analysis on learners’ self-explanations
show that this information helped learners to relate hints to their
own code, programming concepts (e.g. definition of loops, etc.)
and to the assignment objectives. For example, one learner in GT
received a hint to use the “repeat block”, then they were asked:
“How would you use this hint?". The learner self-explained the hint
“I would use it to repeat however many sides there are in the polygon".
The third type of information was the location of the suggested
block. However, we found no evidence that this information helped
learners inGT to find blocks faster than those inGC . This might be
because iSnap blocks are already color-coded, so when a learner is
given a code hint he can find its location by matching its color with
the category of the same color. As a result it is possible that learners
did not need this feature to be stated explicitly in text. These results
show that our explanations design fulfilled 2 of its objectives.

In this Experiment, there are several limitations to our results.
First, the population consists of paid crowd workers with no prior

programming experience. Their motivations and prior knowledge
may differ from those of other populations of learners where pro-
gramming hints are used. However, this study allowed us to be
flexible with the design and add as many constraints (like self-
explanations and post-help surveys) which is usually hard to do in
a classroom setting, like in Experiment 1, that is restricted to a spe-
cific time and format. Second, the 2-minute counter we used to time
when participants received hints is different from the on-demand
way that many hints are presented [13, 34], and may have been
distracting for users. However, prior work shows that students who
most need support often do not ask for hints when they need them
[1, 28]. Our approach of offering hints proactively allowed us to
study hints’ impact on all learners, not just the ones who are willing
to ask for help. We also note that the textual explanations were
still visible to learners when they were writing self-explanations
of hints. It is unclear to what extent these explanations reflect stu-
dents’ understanding of the hints, as opposed to a summary of the
visible explanations. However, we found no cases where a learner
directly copied a textual explanation in their self-explanation.

6 CONCLUSIONS AND FUTUREWORK
In this paper we designed complementary textual explanations for
our existing code hints in iSnap, with the goal of overcoming the
limitations of code hints that only tell a student what to do. We
evaluated our combined support by conducting two controlled stud-
ies on different populations. In our first classroom study, we found
evidence that hint explanations may improve students’ willingness
to follow code hints, though we did not have enough participants
to confirm these results. We conducted another study on a larger
population of crowd workers, allowing us to do additional empirical
analysis. Our results showed that learners who received textual
explanations in addition to code hints perceived iSnap’s support
as significantly more useful, relevant and interpretable and had
a better understanding of the hints provided than learners who
received only code hints. We found no contradictions in the results
of the two studies, and we argue that our results from the second
study should generalize to a classroom context. In our future work,
we will improve the design of textual explanations by supporting
not only hints that suggest to insert a given block, but also those
that suggest to delete a block as well. Additionally, a larger class-
room study on more difficult exercises using a pre and post tests to
measure learning gain as well could confirm how well our findings
from Experiment 2 generalize to a classroom setting. Finally, we
aim to design an interface for iSnap for teachers to author these
explanations for new assignments.
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