Session 3: Evaluating Tools and Interventions

ICER '19, August 12-14, 2019, Toronto, ON, Canada

An Evaluation of the Impact of Automated Programming Hints
on Performance and Learning

Samiha Marwan
North Carolina State University
Raleigh, North Carolina
samarwan@ncsu.edu

ABSTRACT

A growing body of work has explored how to automatically gener-
ate hints for novice programmers, and many programming environ-
ments now employ these hints. However, few studies have investi-
gated the efficacy of automated programming hints for improving
performance and learning, how and when novices find these hints
beneficial, and the tradeoffs that exist between different types of
hints. In this work, we explored the efficacy of next-step code
hints with 2 complementary features: textual explanations and self-
explanation prompts. We conducted two studies in which novices
completed two programming tasks in a block-based programming
environment with automated hints. In Study 1, 10 undergraduate
students completed 2 programming tasks with a variety of hint
types, and we interviewed them to understand their perceptions of
the affordances of each hint type. For Study 2, we recruited a con-
venience sample of participants without programming experience
from Amazon Mechanical Turk. We conducted a randomized experi-
ment comparing the effects of hints’ types on learners’ performance
and performance on a subsequent task without hints. We found that
code hints with textual explanations significantly improved immedi-
ate programming performance. However, these hints only improved
performance in a subsequent post-test task with similar objectives,
when they were combined with self-explanation prompts. These
results provide design insights into how automatically generated
code hints can be improved with textual explanations and prompts
to self-explain, and provide evidence about when and how these
hints can improve programming performance and learning.

ACM Reference Format:

Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An Eval-
uation of the Impact of Automated Programming Hints on Performance
and Learning. In International Computing Education Research Conference
(ICER ’19), August 12-14, 2019, Toronto, ON, Canada. ACM, Toronto, Canada,
10 pages. https://doi.org/10.1145/3291279.3339420

1 INTRODUCTION

Computer Science has the highest dropout rate of any STEM B.S.
degree in the U.S. [15]. Half of that dropout occurs in students’ first
year, with multiple studies estimating the rate of students failing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 19, August 12—14, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08....$15.00
https://doi.org/10.1145/3291279.3339420

Joseph Jay Williams
University of Toronto
Toronto, Canada
williams@cs.toronto.edu

61

Thomas Price
North Carolina State University
Raleigh, North Carolina
twprice@ncsu.edu

their first CS course at 33% [13, 55]. Many studies have highlighted
the positive influence that feedback can have on students’ learning
and motivation in computer science [20, 34, 56]. Thus, researchers
have developed a number of tools to provide automated feedback
to support novice programmers, including enhanced compiler mes-
sages [10], positive feedback [21], and on-demand hints [41, 48].

On-demand hints are particularly promising, since they can be
generated automatically (e.g. using student data [45, 48]), allowing
them to scale to new problems and contexts. These automated hints
are frequently edit-based, next-step hints, which suggest an edit that
the student can make to bring their code closer to a correct solution.
This can be conveyed through textual instructions (e.g. [48]), or by
showing a “diff;” contrasting the student’s code with the suggested
code (e.g. [25, 41, 56]). In this work, we refer to these as code hints.
Figure 1 shows an example of how a code hint is displayed in one
block-based programming environment, iSnap [41].

However, a great deal is not known about how code hints impact
learners. For example, how do learners perceive code hints? How
do code hints impact learning? How can we improve the usability
and impact of code hints? A number of small-scale studies have
examined user logs in real classrooms, which provide some indica-
tion that code hints can help students when they get stuck during
programming [41, 47]. However, previous work also suggests that
students sometimes find it difficult to interpret why code hints
are relevant without having additional explanations [32]. Other
research argues these hints may not lead to learning as they give
away part of the correct solution [3, 37]. The challenge is that few
studies have systematically compared novices doing programming
tasks with and without code hints, such as by conducting random-
ized experiments. In addition, classroom studies typically do not
gather extensive data about users’ experiences through surveys
and semi-structured interviews [9].

This paper aims to evaluate the impact of code hints, and in-
vestigate how they can be improved, in the context of block-based
programming. Specifically, we investigated whether code hints can
be improved with two complementary features: textual explana-
tions, and prompts for students to self-explain the hint in their
own words [50, 51]. We investigated students’ subjective experi-
ences through interviews (Study 1), and conducted a randomized,
controlled experiment to measure the effects of hints on immedi-
ate performance, as well as learning, as measured by success on a
similar programming task without hints (Study 2).

Study 1 was a pilot study with 10 undergraduate, novice program-
mers, who received hints with different combinations of additional
features (textual explanations and self-explanation prompts), and
afterwards, we interviewed them about their experiences. The qual-
itative data suggested that students appreciated code hints, as these

https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3291279.3339420

Session 3: Evaluating Tools and Interventions

showed concrete next steps and guidance about the right direction.
Students reported additional benefits of receiving textual explana-
tions, such as elaborating the logic behind a code hint. On the other
hand, students expressed a variety of opinions on self-explanation
prompts, with some saying that they were confusing, and others
appreciating that the prompts guided them to think deeper about
the hint and how their code worked.

To further investigate the impact of hints, Study 2 was a ran-
domized, controlled experiment that compared: (1) No hints; (2)
Code hints with textual explanations; (3) Code hints with textual
explanations and prompts to self-explain the hints. The study was
conducted as an online laboratory-style study, rather than a class-
room study. We achieved a larger samples and more experimental
control by recruiting a sample of 250 Mechanical Turk workers
who were novices in programming. While this population differs
from students in many ways, they have been suggested as an appro-
priate alternative to university participants for lab studies [11, 27]
and even have been found to behave similarly to online education
learners in MOOCs in some situations [18]. Using this population
allowed us to conduct a randomized, controlled experiment with a
large number of people, which would have been harder to justify
in a classroom setting with high stakes outcomes [9]. Study 2 sug-
gested that code hints with textual explanations (with or without
self-explanation prompts) improved immediate programming per-
formance, relative to no hints. In addition, we found that learning
— as measured by performance on a second task where hints were
not provided - was only increased when self-explanation prompts
accompanied code hints and textual explanations. This improve-
ment was also limited to objectives on the second task that closely
resembled objectives from the first task.

In summary, this paper’s primary contributions are: 1) Insight
into students’ perspectives on the value of next-step code hints, ac-
companying textual explanations, and self-explanation prompts. 2)
Results from a randomized experiment with a convenience sample
of online learners suggesting that code hints with textual expla-
nations (with and without self-explanations) improve immediate
performance. 3) Results from a randomized experiment suggesting
that prompts to self-explain are necessary in order for code hints
to lead to learning (better performance on a related second task).

2 RELATED WORK

An increasing number of systems offer automatically generated
code hints, usually targeting novice programmers [23, 25, 26, 29,
38, 41, 48]. These hints can be generated using data-driven meth-
ods, using student or expert-authored data [26, 30, 45, 48], or using
program generation techniques from software engineering (e.g.
test-driven synthesis [38], automated program repair [58]). These
systems generally offer hints to students as they write code for
programming assignments, which requires adaptively supporting a
variety of coding approaches and situations. Because these hints are
generated automatically, authors have pointed to their potential to
provide scalable feedback to a large number of assignments without
requiring instructors to author hints manually [45, 48]. However,
because they are not authored by instructors, these hints are gen-
erally limited to suggesting edits to the student’s code, without
an explanation [43, 47]. This differentiates code hints from other

62

ICER '19, August 12-14, 2019, Toronto, ON, Canada

forms of instructor-authored, automated programming feedback,
such as autograder messages (e.g. [8, 36]), enhanced compiler error
messages (e.g. [10]), or misconception-driven feedback [24]. A pri-
mary goal of this work is to evaluate whether these adaptive and
easily generated code hints can also lead to better outcomes for
students, and to determine whether other forms of feedback (e.g.
textual explanations, self-explanation prompts) can improve them.

2.1 Theoretical and Empirical Justifications.

Theoretical justification for the use of hints in learning environ-
ments grows out of early work on cognitive tutoring systems [7],
which were designed around the ACT-R cognitive theory [5]. Many
of these early tutoring systems, such as the Act Programming Tu-
tor [17] targeted programming, though the theory is not domain-
specific. ACT-R stipulates that problem solving requires 2 types
of interrelated knowledge: declarative knowledge, which can be
represented verbally (knowing that, e.g. “what is a variable”), and
procedural knowledge, which encodes how to solve a specific prob-
lem step (knowing how, e.g., “when and how do I declare a variable”).
Under ACT-R, problem solving practice emphasizes building proce-
dural knowledge through repeated application of production rules.
Principle-based hints that explain a domain concept can therefore
be seen as helping students to simultaneously acquire declarative
knowledge and contextualize their procedural knowledge accord-
ingly [1]. This helps to prevent students from learning overly spe-
cific procedural knowledge (e.g. “a for-loop counter always starts at
0”) by providing a means to abstract their problem-specific actions
to more general rules. The Knowledge-Learning-Interaction (KLI)
framework [28] suggests that hints can prompt this acquisition of
verbal (declarative) knowledge by engaging the student in sense-
making, or the process of reasoning and constructing explanations.
Aleven and Koedinger argue that this self-explanation process
is an essential component of learning from hints, but it is unlikely
to occur spontaneously [3]. While principle-based hints can help
students build declarative knowledge through sense-making, many
automated programming hints are bottom-out hints, saying only
what to do but not why (e.g. [25, 41, 48]). Under ACT-R, these serve
the primary purpose of getting a student to complete a step or prob-
lem more efficiently, as the unsuccessful search for a correct answer
is unlikely to result in learning [6]. As explained in Section 3, our
design of automated hints draws on these theoretical perspectives
by including both textual explanations (similar to principle-based
hints), and prompts to encourage students to self-explain the hints.
Empirical evaluations of the specific benefits of code hints.
Despite the growing body of work on automatically generating pro-
gramming hints (c.f. [42]), few empirical studies have measured
their impact on students’ performance and learning. Instead, many
evaluations have focused on technical aspects of the hint generation
process, such as whether the generated hints are able to resolve
known errors in students’ code (e.g. [23, 29, 54]), or expert-ratings
of hint quality (e.g. [39, 40, 45]). Other work has used laboratory
studies to investigate how these hint systems impact students’ per-
ceptions. In [43], Price et al. studied students as they completed 2
programming assignments, first aided by a human tutor and then
by automated hints. The authors found that automated hints were
perceived as quick and easy to use, but were also perceived as less

Session 3: Evaluating Tools and Interventions

perceptive and interpretable than human help. Perhaps the most
related work comes from Rivers [47], whose dissertation describes
a user study conducted with the ITAP tutoring system, which offers
data-driven hints for Python programming. Rivers found that less
experienced programmers wanted more detailed content in their
hints, compared with more experienced programmers, and that
most users wanted hints to give as little information as possible,
while allowing the option to see more detail if necessary.

A few studies do point to code hints’ potential to impact learning;
however, none of these studies investigated students completing
whole programming tasks. Corbett and Anderson [17] found that
on-demand hints in their structured ACT Programming tutor, which
led students through a programming problem one step at a time,
improved students’ performance on a post test. Fossati et al. found
that versions of their iList linked list tutor that offered feedback,
including on-demand hints, produced improved student learning
[21]. Additionally, Choudhury et al. [16] found that students with
access to their code style hints produced significantly better-quality
solutions than students who did not. Only Rivers [47] compared
students with and without access to hints during programming
assignments in a classroom context. However, she found no signifi-
cant difference between the conditions.

Our work builds on these prior evaluations with new elements:
empirically investigating the impact of code hints, in combination
with different supporting features, on learners’ preferences, perfor-
mance and learning, while completing whole programming tasks.

3 DESIGN OF HINT SUPPORT

In this work, we built on an existing system called iSnap [41], a
block-based novice programming environment that supports stu-
dents with code hints. The hints are generated by a data-driven
algorithm [45], which uses a database of correct solutions for a
given problem to auto-generate hints. The algorithm identifies a
solution that closely matches the structure of the student’s current
code and suggests an edit to the student’s code that will bring it
closer to that solution. When the system has a hint available, it
annotates the student’s code with a “HINT” button, as shown in
Figure 1 (top). When clicked, the system displays a hint dialog,
as shown in Figure 1 (blue box) with the suggested edit. This is
communicated through a visual “code hint,” which contrasts the
student’s current code with suggested code. In this work, we evalu-
ated 2 additional features of the system’s hints: textual explanations
and self-explanation prompts. Both of these features were designed
to overcome limitations of code hints, identified in prior work, as
explained below.

First, as Gusukuma et al. note, code hints suggest only what the
student should do, not why [24], and prior work suggests that this
can make hints difficult for students to interpret [43]. Further, if
a primary role of hints is to help students to contextualize their
actions with domain knowledge, as Aleven suggests [1], then code
hints alone may not facilitate learning. In our previous work we
addressed this limitation by adding textual explanations to code
hints [32]'. An example is shown in Figure 1 under the label “Text

'n our current implementation, these explanations are written manually and selected
automatically [32]. The hints evaluated in this work are therefore technically “semi-
automated.” However, our goal in this work was to explore and evaluate possible ways
to improve code hints, and we leave questions of generation for future work.

63

ICER '19, August 12-14, 2019, Toronto, ON, Canada

pen down

€11 fwhatis sides'number? SELLRVET S

HINT
move E[D steps

Your code Suggested Code

| pen down
| ask | and wait

\ move @ steps

Text Hint:
The "repeat’ block (under Control) allows you to run the
same code a fixed number of times, like moving and
turning the sprite to draw each side of a polygon.

Why do you think Snap recommended this hint?
[to reduce commands and draw the polygon ‘

S

Figure 1: iSnap displays hint button (top). When clicked, it
shows a code hint (blue box), textual explanation (red box)
and self-explanation prompt (green box).

Hint” These explanations were designed to complement a given
code hint by conveying: 1) where to find the suggested block, 2)
what the block does, and 3) how it is useful for the given assignment.
In this prior work [32], we found that students appreciated the
textual explanations, and that they led to improved ability to explain
the purpose of hints, but they did not have any significant additional
impact on programming performance compared to code hints alone.
A second limitation of automated code hints is that they are ef-
fectively “bottom-out” hints, telling the student exactly what to do,
without requiring them to reason about the information. Prior work
suggests that while such bottom out hints are necessary to help
students who are stuck, they likely only lead to learning when stu-
dents spontaneously self-explain the hint, which is rare [3, 51]. To
address this, we designed self-explanation prompts, as shown at the
bottom of Figure 1. These prompts randomly show one of a variety
of messages, such as “Why do you think the system recommended
this hint?” and “What is this hint trying to help you to under-
stand or do?” that encourage the student to think critically about
the hint itself and its relation to their code. The self-explanation
prompt is open-ended, and users can write anything in the response
field, with at least 20 characters in order to close the hints dialog.
In domains other than programming, several studies suggest that
self-explanations can benefit learning (e.g. in mathematics [57]),
and such self-explanation prompts were particularly useful for low
prior knowledge students in a biology class [33]. However, there is
also evidence that learners may be distracted or frustrated by such
prompts [52], and there is comparatively less work exploring the
generation of self-explanations in programming [35, 53].

4 STUDY 1: PERCEPTIONS OF HINTS

Our goal with this study was to understand students’ subjective
perceptions of code hints, textual explanations and self-explanation
prompts, specifically when and how they are helpful, and how they
can be improved. We ran a pilot study with undergraduate students
at a research university where students programmed with different
combinations of hint support, and we conducted interviews with

Session 3: Evaluating Tools and Interventions

students afterwards. We identified key themes from the interviews,
which informed our subsequent study and offer design implications
for how and when to use different kinds of hint support.

4.1 Methods

Population: We recruited 10 undergraduate students from an in-
troductory engineering course at a large research university, to
participate in our study by announcing the study to all students by
email. As we were specifically interested in hints’ impact on novice
programmers, we required that participants have no prior program-
ming courses or experience. To encourage students to participate
regardless of their interest in programming, we compensated partic-
ipants with a $20 gift card. To facilitate scheduling, we recruited the
first 10 participants who met our eligibility criteria and were able
to sign up for a study timeslot. As a result, we were unable to en-
sure a demographically representative population. Our participants
were all males (ages 18-20), all of them were first-year students in
engineering fields (7), life sciences (1), exploratory studies (1) and
human biology (1). All participants reported that they had not used
any block-based programming language before.

Programming Environment: All programming in this study
took place inside of iSnap[41]. The system automatically offered
a hint every 2 minutes by annotating the student’s code with a
hint button (Figure 1, top). This hint automatically updated as the
student edited their code. This student was free to click on the hint
immediately, or wait. Hints accumulated over time, such that if a
student did not ask for any hints for 4 minutes, the student could
then request 2 hints in a row. This setup was intentionally designed
to address challenges evaluating hints in prior work, where many
students either avoided hints [4, 46, 47], or abused them by re-
peatedly requesting them [2]. By proactively showing hint buttons
every 2 minutes, the system encouraged frequent help use without
forcing it, and the 2 minute timer prevented overreliance on help.
To evaluate all hint types, in this study students saw 4 types of hints:
code hint only, code hint with textual explanation, code hint with
self-explanation prompts and code hint with both textual explana-
tion and self-explanation prompts. Each time a student requested a
hint, they were given a different random hint type, which ensured
that each student saw as many different hint types as possible.

Procedure: One researcher conducted the study? with each
participant individually over a 75 minute period. Prior to arrival,
participants filled out a short pre-survey that collected demographic
information. The researcher started by asking the student to read
through a short tutorial on programming in iSnap for 5-10 minutes.
The tutorial covered the user interface of iSnap and explained all
programming concepts needed for the later programming tasks
(loops, input/output and drawing) using a combination of text and
short example animations. Since the goal of our study was to study
how students use and learn from help, the tutorial was intentionally
short, and students were expected to learn as they programmed.
Next, the researcher asked the student to read the instructions of
the first programming task and then asked the student to work on
Task 1 for 15 minutes. Task 1 asked the student to create a program
to draw a polygon with any number of sides (chosen at runtime by
the user). After 15 minutes, the student was given the option to take

2Study procedures are available at: https://go.ncsu.edu/icer19-study1-procedure

64

ICER '19, August 12-14, 2019, Toronto, ON, Canada

another 5 minutes to complete the task if desired, after which they
were asked to stop. Almost 90% of students were able to complete,
or nearly complete, this first task. After the student finished Task 1,
the researcher conducted a semi-structured interview (Interview 1)
about the student’s experience with iSnap. This interview lasted
4-6 minutes, during which the researcher asked questions about the
specific hints that the student received during Task 1. The researcher
showed the student each hint that the student had received, along
with the code that the student had written at that point in time.
The researcher asked the student about the timing of each hint,
what was helpful about it, whether they trusted it, how it can be
improved and what motivated them to ask for hints.

Next, the student completed another programming task (Task
2), working for another 15 minutes (plus 5 optional minutes). Task
2 was very similar to Task 1, using the same programming con-
cepts, but it was more difficult. We created two versions of Task
2: an easier version in which students had to draw a strip of trian-
gles, and a harder version in which students had to draw a design
made of rotated circles. The two solutions differed by only a few
blocks. Since our goal was to understand how students used hints,
we wanted to ensure that they were challenged on Task 2. Any
student who finished Task 1 in less than 10 minutes was given the
harder assignment on Task 2. As in Task 1, students could ask for
hints in both tasks, since the goal of this study was to evaluate
perspectives on hints across different tasks. During all program-
ming tasks (lasting for 15-20 minutes), students were free to request
hints from iSnap, but restricted to regular intervals, as explained in
detail above. In Task 2, 7 of the 10 students were able to complete
it. After the student finished Task 2, the researcher conducted a
second semi-structured interview (Interview 2), which lasted 9-12
minutes. As in Interview 1, the researcher asked about each re-
quested hint. The researcher then asked some questions on each
hint type>. Questions in the second interview helped us to gain
insights about students’ perspectives about each hint type, why
it was helpful or less helpful, and what other types of help they
were expecting to see other than the given help. This qualitative
data will have useful implications on future designs of support in
block-based programming environments.

4.2 Results: Interview Analysis

To gain qualitative insights into students perspectives on each hint
type, we examined responses to several open-ended questions on
each hint type students have received, in both Tasks. One of the
authors reviewed all 10 students responses to identify both positive
and negative themes that emerged for each type of hint and how
they can be improved. To identify themes, the researcher grouped
student responses by the type of hint being discussed (e.g. code
hint), and the valence of the comment (positive, negative). We report
on these themes below.

4.2.1 Code hints. These helped students to see a clear next
action they could take, which they could visually compare
to their current work. Students (4 out of 10) declared that code
hints were useful because they contrasted students’ current code
with suggested code: “it just really helped when evaluating where I

3We found that 9 out of 10 students have received all kinds of hints

Session 3: Evaluating Tools and Interventions

am and where I need to get to” [P2]*. Since this was the first time
students had used the system “it gives you something that you had
not thought about." [P6]. Some students appreciated the simplicity
and visual nature of code hints, which allowed them to progress
faster: “T am a visual learner so the code hint ... makes it a lot quicker”
[P1]. The simple and actionable nature of code hints is in contrast
to principle-based hints, which can require domain-specific reading
skills to understand, even when well-written [3]. However, students
(3 out of 10) did criticize code hints for saying only what to do and
not helping them understand: “it just told me what to do but I did
not know what the problem is.." [P3]. Another student felt that
code hints were confusing because a “code hint itself cannot provide
enough information” [P9].

4.2.2 Code hints with Textual Explanations. These provide com-
plementary benefits, where the explanation helps students
understand the “how" and “why” of a code hint. Students (7
out of 10) noted that the textual explanation gave useful but differ-
ent information from a code hint: “[the code hint] shows which block
to use and the text gives an idea of what to use it for.” [P6]. When we
asked students whether they prefer code hints alone or code hints
with textual explanations, 2 students noted that code hints alone
can be enough, and that adding explanations “can not be not helpful.
If you do not need then you do not need." [P9], and ‘I did not find it
as helpful as doing it myself" [P10]. The rest of students preferred
having both because “the text hints helped me to understand the
visual hints [code hints] on a deeper level"[P7]. These results suggest
that students appreciate explanations with code hints, and there is
little cost to the student, as they are easy enough to ignore.

4.2.3 Self-explanation Prompts with Hints: These can help stu-
dents stop and think more deeply about the hint. Some stu-
dents (4 out of 10) saw the value in pausing to think and self-explain:
“it made me think and take a step back about the whole process.”
[P7] and “it adds a value... it just makes you go on and look at it
again." [P10]. Other students (2 out of 10) mentioned that the self-
explanation prompt enhanced code hints as “it helped to interpret
what does the picture mean.[P2] and “the question forced you to figure
how this helps you so you really understand rather than just looking
at it and dismissing it" [P8].

Self-explanation prompts were criticized for being frus-
trating and confusing. A few students (3 out of 10) had vocally
negative comments on adding self-explanation prompts, as con-
fusing: ‘T was confused about the question... because I did not know
what the hint was giving to me." [P3] and not giving any support “it
is not giving me anything back, it is just asking me if I understood
it." [P5]. We observed that most of the students who were more
critical of the prompts were also not able to complete both program-
ming tasks. This agrees with prior work suggesting that students
with lower prior knowledge may have difficulty with open-ended
self-explanation prompts, since they lack the domain knowledge to
construct meaningful explanations [49].

4.2.4 Other Insights that Emerged From Interviews: To better un-
derstand why students actually needed help, we asked them, "what
motivated or encouraged you to ask for help?" Most students said
they needed help when they are lost: “when I did not know what

4P2 indicates that this quotation was from Participant 2.

65

ICER '19, August 12-14, 2019, Toronto, ON, Canada

to do next." [P9] and “when I have used all the possible options, the
hints help to move to the next step." [P5]. Other students thought that
getting a hint at any time would be helpful: “whether I was doing
something right or wrong it just put me in the right direction." [P2].
Most students preferred to get hints at the beginning of the task:
“just starting out at first that really helps... want to at least know how
to start it." [P1]. However, a few students preferred hints “probably
a little later" [P10], or after playing around for a while in order to
“see what I can get on my own and go deeper... then once I felt lost, T
pressed the hint button.” [P7]. Students’ answers clarify that there
is no specific time where all students agree to have hints at. This
suggests that it is preferable to keep hints available to students all
the time, but in such a way that prevents hints abuse.

When students were asked how code hints can be improved, all
of them appreciated them as they were. As for improving textual
explanations when added to code hints, one student suggested to
put “the text first and then the visuals" because when the explanation
comes after the code hint “people will skip it to get this over" [P5].
Other students suggested making explanations more helpful by
‘add[ing] examples on what to do" [P6]. For self-explanations, a
few students suggested to have them “after the assignment, like a
feedback, and then you can reflect upon the whole process." [P5].

Finally, the researcher asked students what other hint types they
prefer to receive. Most students suggested that the current ones
are enough, some suggested that in addition to providing specific
hints related to students’ code, “adding general hints... would be
really helpful" [P6]. Another student suggested having hints that
indicates their progress such that “the program can pop a hint when
I am doing something wrong... and if I am doing something right it
says like ‘good work™’[P5].

Conclusions: Our results suggest that, overall, students see the
benefits in all three types of hint support, which offer complemen-
tary benefits. However, some students did find self-explanation
prompts to be confusing or irritating, so it is important to investi-
gate how they impact student outcomes.

5 STUDY 2: LEARNING AND PERFORMANCE

Having positive insights on hints types from students’ interviews,
we were encouraged to investigate the effect of hints on perfor-
mance and learning transfer on a large-scale study. To do so, we re-
cruited crowd workers through Amazon’s Mechanical Turk (MTurk)
platform who have attested to have little to no prior knowledge
in programming. Previous work has shown that recruiting crowd
workers can be an effective form of conducting large-scale user
studies in lieu of using university participants [11, 27], and this
has been previously employed in computing education research
to assess the efficacy of online learning approaches [31]. This ex-
periment aims to answer the following research questions: What
is the effect of hints with and without self-explanation prompts
on: 1) learners’ perspectives on iSnap’s helpfulness with and with-
out receiving hints? 2) learners’ performance?, and 3) learning, as
measured by performance on future tasks without hints?

5.1 Methods

Population: In this study, we recruited 250 total crowd workers
through Amazon’s Mechanical Turk (MTurk) platform. As in Study

Session 3: Evaluating Tools and Interventions

1, we recruited only participants who attested to having no pro-
gramming experience’, and we compensated them for participation
($4.50). To ensure that our data included only participants who made
an honest effort at the programming tasks, we excluded from our
analysis those participants who did not attempt Task 1 (no edits).
We also excluded those who attempted a task multiple times by
resetting the environment, or reported having prior programming
experience (despite claiming to meet the eligibility requirements),
leaving 201 total participants. The recruited learners included 118
males, 80 females and 2 learners did not specify their gender. The
median age was 25-34, and 84.5% reported their education level
as either a BS degree or some college credit. While this popula-
tion is different in important ways from college learners, it is also
demographically similar in age and education level.

Procedure: This study used a similar procedure to Study 1,
though it was conducted online rather than in person. Learners
completed the same tutorial and the same 2 programming tasks in
the same programming environment, and received the same auto-
mated hints. However, since our goal with Study 2 was to measure
the impact of hints on performance and learning, there were 4 differ-
ences in the procedure. First, each learner was randomly assigned
to one of three conditions that determined what type of hint (if any)
our system provided in the first task: 1) no hint (control condition),
2) Code hints with Textual explanations (CT), and 3) Code hints
with Textual explanations and self-Explanation prompts (CTE). Un-
like in Study 1, we intentionally chose to always provide textual
explanation with code hints, since our results from Study 1, as well
as our prior work [32, 44] suggested that textual explanations may
improve the likelihood of learners benefiting from hints with few
drawbacks. However, students’ mixed reactions to self-explanation
prompts in Study 1 encouraged us to create a separate condition for
hints with explanation prompts (CTE). Our population included 63
learners in the no hint condition, 79 in the CT condition and 59 in
the CTE condition®. As in Study 1, the programming environment
provided learners with the opportunity to request a hint every two
minutes, but in Study 2 the type of hints was always the same, dic-
tated by their condition (e.g. a code hint with textual explanations),
not random. Our timed approach ensured that, in a 15-min task,
every learner can have from 0 to 7 hints maximum.

Second, to measure if hints can improve learners’ performance
in future tasks, we used Task 2 as a post-test, which did not offer
hints to learners in any condition. We chose to use Task 2 to assess
learning, rather than a traditional post-test, as we were interested in
measuring learners’ ability to perform a similar task without help.
We were also able to use fine-grained analysis of learners’ Task
2 programming logs to compare how learners performed across
time in different programming objectives. Unlike in Study 1, we
had only one version of Task 2, where learners had to draw a strip
of triangles (the easier version).

Third, since this study was conducted online, we could not in-
terview participants. Instead, we provided post-survey after both

SWhile participants could have lied about their level of programming experience, the
data suggest that the majority of participants were novice programmers, and those
with experience would be distributed randomly across conditions.

% An error in our random assignment process caused there to be more participants in
the CT condition. We carefully verified that was due only to random assignment, not
disproportionate dropout.

66

ICER '19, August 12-14, 2019, Toronto, ON, Canada

tasks, as explained below. Fourth, all participants had exactly 15
minutes to complete each programming task, with no extra time.

Measures: We analyzed 2 primary sources of data from learners:
Post Task 1 Survey and log data. We also collected a Post Task 2
survey, which is not analyzed here. Post Task 1 Survey asked learn-
ers to rate the overall helpfulness of the programming environment
on a rating scale from 1 to 10. It asked users to elaborate on their
judgments and to explain in what situations this action was most
useful, though we do not analyze this data in this work. In addition
to the survey, we also collected log data of learners’ work in our
system, including complete code traces. For both programming
tasks, we gave learners the same amount of time (15 minutes). We
chose tasks that would take most learners at least 15 minutes, so
we used the number of objectives completed in this time as our
measure of programming performance. We defined 4 objectives
(e.g. “draw a shape” or “correctly get and use input from the user”),
such that each objective was independent, and completing all 4
indicated successful completion of the whole task. We developed an
automatic grader to determine the number of objectives completed
by each participant, and we manually verified the auto-grader’s
accuracy on 100 submissions of each task.

5.2 Results

5.2.1 The Impact of Hints on Learners’ Programming Performance
and Learning. To measure the effect of hint condition on learn-
ers’ immediate performance, we compared the number of objec-
tives that learners completed during Task 1 in the control group
(M7=2; SD=1.40), CT (M=2.53; SD=1.24) and CTE (M=2.8; SD=1.31).
A Kruskal-Wallis test® shows a significant difference among hint
conditions for learners’ performance (y%(3) = 12.84,p = 0.001).
Afterwards, we used post-hoc non-parametric Dunn’s test with
Benjamini-Hochberg correction for multiple comparisons to deter-
mine pairwise significant differences across hint conditions [12, 19].
Dunn’s test shows a significant difference between control group
and CT learners (z = 2.16; p = 0.045), a significant difference
between control group and CTE learners (z=3.56;p = 0.001) and
non-significant difference between CT and CTE learners (z = 1.62;
p = 0.104). This shows that both conditions with code hints com-
pleted significantly more objectives than the control condition. As
a result, more learners completed all of Task 1 in the CT condition
(27.8%) and CTE condition (45.8%) than the control condition (22.2%).
Figure 2 (left) plots the mean number of objectives that had been
completed by learners in each condition at different times through-
out the 15 minute task. It shows that the difference between the
three groups became more pronounced over time. These results
suggest that code hints with textual explanations, and code
hints with both textual explanations and self-explanations
prompts significantly improve performance.

Task 2 served as our measure of learning, since learners had no
hints on this task. It consists of 4 objectives. The first 2 objectives
were identical to the first 2 objectives in Task 1 (“draw something”
and “ask user for input X and repeat X times”), and they measured
how well learners learned to repeat these steps in a new context.

"Though the data was not normally distributed, we report averages with SD, rather
than medians, since the number of objectives quite small.
8We used non-parametric tests, as our data were not normally distributed.

Session 3: Evaluating Tools and Interventions

The last 2 objectives measured learners’ ability to apply the same
programming constructs (loops and drawing) in a new way (“repeat-
edly draw a triangle” and “draw a strip of triangles”). For example,
one solution for the third objective required nested loops.

We first compared the total number of objectives completed
by learners in the control group (M=2.09; SD=1.43), CT condi-
tion (M=1.9; SD=1.47), the CTE condition (M=2.47; SD=1.40). A
Kruskal-Wallis test showed that this difference was not significant
(x?(3) = 5.58; p = 0.06). These results were inconclusive, and we hy-
pothesized that hints might have only impacted future performance
for isomorphic objectives. We therefore compared performance on
only the first two objectives on Task 2, which were identical to the
first two objectives in Task 1. A Kruskal-Wallis test shows a signif-
icant difference across groups in their performance of the first 2
objectives (y%(3) = 8.54,p = 0.013). A post-hoc Dunn’s test with
Benjamini-Hochberg correction shows a significant difference be-
tween CTE learners and both the control group and CT learners
((z = 2.73; p = 0.01), (z = 2.35; 0.028)) respectively, however, no
significant difference between CT learners and the control group
(z = 0.53; p=0.59). We found that 41.2%, 49.3%, 67.7% of control
group, CT and CTE learners, respectively, were able to finish the
first 2 objectives of Task 2. These result suggests that only code
hints that have self-explanation prompts improved learners’
performance on future tasks without hints, specifically on
objectives that learners saw before in Task 1.

Task 1 Task 2

@
)
2
[=%
£ 60.0% > 4
g - Hint Type
040.0% _ — No Hint
3 Y =cT
@ [> CTE
520.0%- 7
o ’
d) s
Z 00%- . | | =) i | |

0 5 10 15 0 5 10 15

Time (min)

Figure 2: Learners’ average completion progress (with shad-
ing indicating standard error) in each condition, measured
over time, for Task 1 (left) and in Task 2 (right).

5.2.2 Hints Request Rate, Follow rate and Processing Time in Task
1. While our system offered hints automatically, starting at 2 min-
utes, learners were free to open these hints or ignore them. We
found nearly all learners in both conditions requested at least 1
hint (98.7% in the CT group, and 96.6% in the CTE group). However,
we found that the number of hints requested by learners in the
CT condition (Med=5; IQR=4) was greater than that in the CTE
condition (Med=4; IQR=4), and a Mann-Whitney U-test showed
that this difference was significant (U = 1649, p < 0.01, Cohen’s
d = 0.477). Furthermore, we found no significant spearman corre-
lation between the number of hints requested and the number of
objectives completed on Task 1 in both the CT group (r = —0.101,
p =0.37) and CTE group (r = —0.135, p = 0.31). We did find a weak
but significant, negative spearman correlation between the number
of hints requested on Task 1 hints and Task 2 performance in the CT
group (r = —0.243, p = 0.03) but not in the CTE group (r = —0.102,

67

ICER '19, August 12-14, 2019, Toronto, ON, Canada

p = 0.40). This suggests that the number of hints requested does
not strongly predict performance on current or future tasks.

Learners could also choose whether or not to follow hints that
they received. We defined a learner’s follow rate as the percentage of
requested hints that a learner followed, meaning they used the block
suggested by the hint within 120 seconds of seeing a hint. We found
the average number of hints followed by each learner in CTE group
(Med=0.8; IQR=0.5) was greater than that by CT group (Med=0.66;
IQR=0.42), and a Mann-Whitney U-test showed this difference was
significant (U = 2686, p = 0.036, Cohen’s d = 0.33). We also mea-
sured how long learners kept the hint dialog open before closing it,
as a rough measure of how long they took to process the hint. We
found the average time taken by each learner to dismiss the hint
dialog in CTE group (Med=27.4; IQR=17.3) was greater than that by
CT group (Med=16.3; IQR=9.96) and Mann-Whitney U-test shows
that CTE learners have spent significantly more time processing
hints than CT learners (U = 3353, p < 0.01, Cohen’s d = 0.72).
Our results suggest that self-explanation prompts encour-
age learners to take longer to view hints, request fewer hints
and follow more of the hints they requested.

5.2.3 Users’ Ratings in Post Task 1. We compared ratings on iSnap’s
usefulness between learners collected in Post Task 1 Survey. We
found helpfulness ratings of learners in the control group (Med = 5,
IQR = 4) was much less than both the CT learners (Med = 7,
IQR = 3.4) and CTE learners (Med = 8, IQR = 2). A Kruskal-Wallis
test showed a significant difference in learners’ rating across condi-
tions (y%(3) = 29.72, p < 0.01). Afterwards, Dunn’s test showed a
significant difference between control group and both CT learners
(z = 3.91; p < 0.01) and CTE learners (z = 5.34; p < 0.01), but
no significant difference between CT and CTE learners (z = 1.78;
p = 0.07). This results suggested that iSnap was perceived as
significantly more useful when providing hints.

6 DISCUSSION AND LIMITATIONS

In this section we discuss our primary results from Study 2, and
how our interpretation of them can be informed by our qualitative
results from Study 1.

Code hints with textual explanation improve learners’ im-
mediate programming performance. In Study 2, learners in the
CT and CTE conditions were able to complete 25% and 40% more of
Task 1, respectively, than the control group without hints. Helping
students to progress when stuck to complete a problem is one of the
primary purposes of next-step hints [3], but it was not obvious that
they would accomplish this. We found that students were in fact
much more likely to complete all four of Task 1’s objectives with
hints (over twice as likely in the CTE group). Our findings from
Study 1 suggest that students are aware of code hints’ ability to
improve immediate performance, and appreciate the hints’ ability
to help put them “in the right direction.” [P2]. This is a similar theme
in prior work on students’ perceptions of code hints [43, 44].

Self-explanation prompts changed the way that students
interacted with code hints. In Study 1, our participants frequently
noted that self-explanation prompts caused them to .. think and
take a step back about the whole process.” [P7]. Study 2 helps us to
better understand quantitatively what impact the prompts had on
learners’ use of hints. We found that the median student with hints

Session 3: Evaluating Tools and Interventions

and self-explanation prompts spent 64% more time viewing each
hint than students without the prompts, which agrees with our
qualitative findings. This suggests that these prompts may have
“forced you to figure how this [hint] helps you, so you really under-
stand rather than just looking at it and dismissing it” [P8]. Further,
we find that learners in this group asked for only 67% as many hints,
but were 25% more likely to follow them. This may be evidence
that learners are getting more out of the hints that they read, as
students told us in Study 1 “it helps me contemplate my thoughts
process.” [P7]. One might expect that asking for fewer hints would
have a negative impact on learners’ immediate performance, since
they see fewer pieces of a correct solution. However, we found that
learners in the CTE condition did no worse than their CT counter-
parts, and may have even performed a bit better, with 64% more
students finishing all of Task 1’s objectives.

Code hints only improved learning when accompanied by
self-explanation prompts. We found that learners in CTE group
on Task 1 performed 23% better overall on Task 2 than the control
condition. However, learners with only code hints, but not prompts
(CT group), performed no better than the control condition. Prior
work suggested that students learn best from hints when they
spontaneously self-explain their meaning [3, 51], and our results
suggest that this can also be encouraged with prompting them to
self-explain. This students’ need for self-explanation support may
explain why Rivers’ prior evaluation of automated hints did not
find a learning effect [47]. The students we interviewed in Study
1 seem to be aware of this need, as most (though not all of them)
appreciated self-explanation prompts’ ability to encourage them
“to interpret what... the picture [hint] mean][s].)” — or what the KLI
framework might call the sense making necessary for learning from
hints [28]. We also note that we can make no claim about whether
or how textual explanation contributed to learning, since we chose
not to investigate this in Study 2.

Code hints with self-explanation prompts improved learn-
ing, but only on isomorphic tasks. The primary learning im-
pact of code hints with textual explanations and self-explanation
prompts seems to be on learners’ ability to perform same program-
ming objectives that they have previously accomplished with hints.
We found that the CTE condition performed significantly better
on these isomorphic Task 2 objectives than the control group, but
not on other objectives that were different from Task 1 and more
challenging. We note that this investigation of isomorphic objec-
tives was a post hoc analysis, which we performed after finding
inconclusive results about hints’ overall impact on learning. Future
work should investigate the hypothesis that code hints with both
textual explanations and self-explanation prompts may be more
effective for helping students to repeat things they have already
done than completing new tasks.

What can we learn from these results? Our results are an im-
portant initial step in understanding the potential benefits and lim-
itations of using automated programming hints in classrooms. Sys-
tems that offer automated hints without self-explanation prompts
are currently in use in classrooms (e.g. [22, 41]), and our results
suggest that their designers might consider adding this feature. We
acknowledge that our studies focused on short (15 minute) pro-
gramming assignments, and our quantitative results relied on a
convenience sample of crowdworkers, so we should be cautious

68

ICER '19, August 12-14, 2019, Toronto, ON, Canada

in generalizing these results to other contexts. However, we argue
that given the lack of existing empirical results on the efficacy of
programming hints, these initial, positive results still provide impor-
tant insight. It is difficult to create large-scale, controlled classroom
studies, but our results justify the need for such studies, and for
identifying important hypotheses to test in these studies (e.g. the
importance of self-explanation prompts). For example, if hints cre-
ate a learning impact over just 15 minutes of programming, it is
possible that the effect may be much larger over a whole semester,
but this can only be verified empirically.

6.1 Limitations

In Study 2, our population consisted of paid crowd workers with
no prior programming experience. Their motivations, and prior
knowledge may differ from those of other populations of learners
when programming hints are used, and we emphasize that this
limits the generalizability of our results. However, such an approach
is not unprecedented in computing research [31], and we argue that
we can still gain valuable insight from this population, as suggested
by prior work [11, 27]. Working with this population allowed us
to collect a large amount of data, randomly assign participants
to conditions, and collect a more gender-balanced dataset — all of
which can be quite difficult in a classroom setting. In addition, our
quantitative results from crowdworkers also strongly parallel our
findings from novice students in Study 1

In Study 1, our participants all identified as male. Since prior
work suggests that gender plays an important role in how students
seek and use help [4, 14], this limits the generalizability of our
results. Additionally, in both studies, we only studied users during
two simple, 15-minute programming tasks, and we have begun
further work to investigate if our results generalize to longer or
more complex tasks in classrooms. We argue that this short duration
likely made it more difficult to detect an effect of hints on learning.
However, it likely limited the diversity of help-seeking scenarios
that users encountered in Study 1.

7 CONCLUSION

This paper presented two studies to assess and investigate next-
step programming hints’ impact on learners’ performance, learning
and perspectives. We have attempted to provide useful insights
to the education community on when and how these hints are
useful and how to improve automated support in programming
environments. This paper’s primary contributions are: 1) Insight
into students’ perspectives on the value of next-step programming
hints and accompanying textual explanations and self-explanation
prompts; 2) A large-scale evaluation of the impact of programming
hints on performance and learning with a convenience sample of
online learners; and 3) Insight into the conditions (e.g. code hints
with self-explanation prompt) under which hints can contribute
to learning, and when they may hinder learning. Specifically, we
found that code hints with textual explanations improved students’
performance, and they improved learning on isomorphic objectives
in future tasks when accompanied by self-explanation prompts.
Our results motivate future work to investigate whether our results
generalize to a classroom context, and to further explore the specific
contexts under which programming hints can lead to learning.

[

Session 3: Evaluating Tools and Interventions

REFERENCES

[1] Vincent Aleven. 2013. Help Seeking and Intelligent Tutoring Systems: Theoretical

Perspectives and a Step Towards Theoretical Integration. International Handbook
of Metacognition and Learning Technologies 28, January (2013), 197-211.
Vincent Aleven and Kenneth R. Koedinger. 2001. Investigations into Help seeking
and Learning with a Cognitive Tutor. In Papers of the AIED 2001 Workhop "Help
Provision And Help Seeking In Interactive Learning Environments’. 47-58.
Vincent Aleven, Ido Roll, Bruce M. McLaren, and Kenneth R. Koedinger. 2016.
Help Helps, But Only So Much: Research on Help Seeking with Intelligent Tu-
toring Systems. International Journal of Artificial Intelligence in Education 26, 1
(2016), 1-19. https://doi.org/10.1007/s40593-015-0089- 1

Vincent Aleven, Elmar Stahl, Silke Schworm, Frank Fischer, and Raven Wallace.
2003. Help Seeking and Help Design in Interactive Learning Environments
Vincent. Review of Educational Research 73, 3 (2003), 277-320.

[5] JR Anderson. 1996. ACT: A simple theory of complex cognition. American

Psychologist (1996). http://psycnet.apa.org/journals/amp/51/4/355/http://courses.
csail.mit.edu/6.803/pdf/anderson.pdf

[6] John R. Anderson. 1993. Rules of the Mind. Hillsdale, New Jersey.

John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995.
Cognitive Tutors: Lessons Learned. The Journal of the Learning Sciences 4, 2
(1995), 167-207.

Michael Ball. 2018. Lambda: An Autograder for

snap. Technical Report. Electrical Engineering and Computer Sciences Univer-
sity of California at Berkeley. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2018/EECS-2018-2.pdf

Joseph E. Beck, Kai Min Chang, Jack Mostow, and Albert Corbett. 2008. Does
help help? Introducing the Bayesian Evaluation and Assessment Methodology.
In Proceedings of the International Conference on Intelligent Tutoring Systems.
383-394.

Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective compiler error message enhance-
ment for novice programming students. Computer Science Education 26, 2-3
(2016), 148-175.

Tara S. Behrend, David J. Sharek, Adam W. Meade, and Eric N. Wiebe. 2011. The
viability of crowdsourcing for survey research. Behavior Research Methods 43, 3
(25 Mar 2011), 800.

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society 57, 1 (1995), 289-300.

[13] Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory

programming. ACM SIGCSE Bulletin 39, 2 (2007), 32. https://doi.org/10.1145/
1272848.1272879

Ruth Butler. 1998. Determinants of Help Seeking: Relations Between Perceived
Reasons for Classroom Help-Avoidance and Help-Seeking Behaviors in an Ex-
perimental Context. Journal of Educational Psychology 90, 4 (1998), 630-643.
Xianglei Chen and Matthew Soldner. 2013. STEM Attrition: College Students’ Paths
Into and Out of STEM Fields. Technical Report. National Center for Education
Statistics, Institute of Education Sciences, U.S. Department of Education. http:
//nces.ed.gov/pubs2014/2014001rev.pdf

Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-driven
automatic hint generation for coding style. In Proceedings of the International
Conference on Intelligent Tutoring Systems. 122-132. https://doi.org/10.1007/
978-3-319-39583-8_12

Albert Corbett and John R. Anderson. 2001. Locus of Feedback Control in
Computer-Based Tutoring: Impact on Learning Rate, Achievement and Attitudes.
In Proceedings of the SIGCHI Conference on Human Computer Interaction. 245-252.
http://dl.acm.org/citation.cfm?id=365111

Dan Davis, Claudia Hauff, and Geert-Jan Houben. 2018. Evaluating Crowdwork-
ers as a Proxy for Online Learners in Video-Based Learning Contexts. Proceedings
of the ACM on Human-Computer Interaction 2, CSCW (2018), 42.

Olive Jean Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6,
3 (1964), 241-252.

Anna Espasa and Julio Meneses. 2010. Analysing feedback processes in an online
teaching and learning environment: an exploratory study. Higher education 59, 3
(2010), 277-292.

Davide Fossati, Barbara Di Eugenio, Stellan Ohlsson, Christopher Brown, and Lin
Chen. 2015. Data Driven Automatic Feedback Generation in the iList Intelligent
Tutoring System. Technology, Instruction, Cognition and Learning 10, 1 (2015),
5-26.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.
2016. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback. International Journal of Artificial Intelligence in Education 27, 1 (2016),
1-36.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common Programming Errors by Deep Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 1. 1345-1351.

[24]

[25

[26

~
=

[28

[29

[30

[31

(32]

[33

(34

[35

@
2

[37

[38

[39

[40

[41

[42

[43

[45

[46

ICER '19, August 12-14, 2019, Toronto, ON, Canada

Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-driven feedback: Results from an experimental study. In Proceed-
ings of the 2018 ACM Conference on International Computing Education Research.
ACM, 160-168.

Bjorn Hartmann, Daniel Macdougall, Joel Brandt, and Scott R Klemmer. 2010.
What Would Other Programmers Do? Suggesting Solutions to Error Messages.
In Proceedings of the ACM Conference on Human Factors in Computing Systems.
1019-1028. https://doi.org/10.1145/1753326.1753478

Andrew Hicks, Barry Peddycord III, and Tiffany Barnes. 2014. Building Games
to Learn from Their Players: Generating Hints in a Serious Game. In Proceedings
of the International Conference on Intelligent Tutoring Systems. 312-317.

Aniket Kittur, Ed H Chi, and Bongwon Suh. 2008. Crowdsourcing user studies
with Mechanical Turk. In Proceedings of the SIGCHI conference on human factors
in computing systems. ACM, 453-456.

KR Koedinger and JC Stamper. 2013. Using data-driven discovery of better student
models to improve student learning. In Proceedings of the International Conference
on Artificial Intelligence in Education.

Timotej Lazar and Ivan Bratko. 2014. Data-Driven Program Synthesis for Hint
Generation in Programming Tutors. In Proceedings of the International Conference
on Intelligent Tutoring Systems. Springer, 306-311.

Timotej Lazar, Martin MoZina, and Ivan Bratko. 2017. Automatic Extraction of
AST Patterns for Debugging Student Programs. In Proceedings of the International
Conference on Artificial Intelligence in Education. 162—-174.

Michael J Lee and Andrew J Ko. 2015. Comparing the effectiveness of online
learning approaches on CS1 learning outcomes. In Proceedings of the eleventh
annual international conference on international computing education research.
ACM, 237-246.

S. Marwan, N. Lytle, J. J. Williams, and T. W. Price. 2019. The Impact of Adding
Textual Explanations to Next-step Hints in a Novice Programming Environment.
In Proceedings of the 24th Annual ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE19 (forthcoming).

Danielle S. McNamara. 2017. Self-Explanation and Reading Strategy Training
(SERT) Improves Low-Knowledge Students’ Science Course Performance. Dis-
course Processes (2017).

Antonija Mitrovic, Pramuditha Suraweera, Brent Martin, and Amali Weerasinghe.
2004. DB-suite: Experiences with three intelligent, web-based database tutors.
Journal of Interactive Learning Research 15, 4 (2004), 409-432.

Briana B Morrison, Lauren E Margulieux, and Cherry Street. 2015. Subgoals ,
Context , and Worked Examples in Learning Computing Problem Solving. In
Proceedings of the International Computing Education Research Conference. 21-29.
https://doi.org/10.1145/2787622.2787733

Pete Nordquist. 2007. Providing accurate and timely feedback by automatically
grading student programming labs. Journal of Computing Sciences in Colleges 23,
2 (2007), 16-23.

Benjamin Paaflen, Barbara Hammer, Thomas W. Price, Tiffany Barnes, Sebastian
Gross, and Niels Pinkwart. 2018. The Continuous Hint Factory -Providing Hints
in Vast and Sparsely Populated Edit Distance Spaces. Journal of Educational Data
Mining (2018), 1-50.

Daniel Perelman, Sumit Gulwani, and Dan Grossman. 2014. Test-Driven Synthesis
for Automated Feedback for Introductory Computer Science Assignments. In
Proceedings of the Workshop on Data Mining for Educational Assessment and
Feedback.

Chris Piech, Mehran Sahami, Joh Huang, and Leo Guibas. 2015. Autonomously
Generating Hints by Inferring Problem Solving Policies. In Proceedings of the
ACM Conference on Learning @ Scale. 1-10.

TW. Price, R. Zhi, Y. Dong, N. Lytle, and T. Barnes. 2018. The impact of data
quantity and source on the quality of data-driven hints for programming. In
Proceedings of the International Conference on Artificial Intelligence in Education.
https://doi.org/10.1007/978-3-319-93843-1_35

Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
ACM Technical Symposium on Computer Science Education.

Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paafen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A Comparison of the Quality of Data-driven
Programming Hint Generation Algorithms. International Journal of Artificial
Intelligence in Education (2019).

Thomas W. Price, Zhongxiu Liu, Veronica Catete, and Tiffany Barnes. 2017.
Factors Influencing Students’ Help-Seeking Behavior while Programming with
Human and Computer Tutors. In Proceedings of the International Computing
Education Research Conference.

T. W. Price, J. J. Williams, and S. Marwan. 2019. A Comparison of Two Designs
for Automated Programming Hints. (2019).

Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017. Evaluation of a Data-
driven Feedback Algorithm for Open-ended Programming. In Proceedings of the
International Conference on Educational Data Mining.

Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017. Hint Generation Under
Uncertainty: The Effect of Hint Quality on Help-Seeking Behavior. In Proceedings
of the International Conference on Artificial Intelligence in Education.

https://doi.org/10.1007/s40593-015-0089-1
http://psycnet.apa.org/journals/amp/51/4/355/ http://courses.csail.mit.edu/6.803/pdf/anderson.pdf
http://psycnet.apa.org/journals/amp/51/4/355/ http://courses.csail.mit.edu/6.803/pdf/anderson.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-2.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-2.pdf
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
http://nces.ed.gov/pubs2014/2014001rev.pdf
http://nces.ed.gov/pubs2014/2014001rev.pdf
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1007/978-3-319-39583-8_12
http://dl.acm.org/citation.cfm?id=365111
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1007/978-3-319-93843-1_35

Session 3: Evaluating Tools and Interventions

[47]

[48]

[49]

[50

[51]

[52

[53]

Kelly Rivers. 2016. Automated Data-Driven Hint Generation for Learning Program-
ming. Ph.D. Dissertation. Carnegie Mellon University.

Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37-64.

Marguerite Roy and Michelene TH Chi. 2005. The self-explanation principle in
multimedia learning. The Cambridge handbook of multimedia learning (2005),
271-286.

Silke Schworm and Alexander Renkl. 2006. Computer-supported Example-based
Learning: When Instructional Explanations Reduce Self-explanations. Computers
& Education 46, 4 (2006), 426—445.

Benjamin Shih, Kenneth Koedinger, and Richard Scheines. 2008. A Response
Time Model for Bottom-Out Hints as Worked Examples. In Proceedings of the
International Conference on Educational Data Mining. 117 — 126.

Hyungyu Shin, Eun-Young Ko, Joseph Jay Williams, and Juho Kim. 2018. Un-
derstanding the Effect of In-Video Prompting on Learners and Instructors. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 319, 12 pages.

Arto Vihavainen, Craig S. Miller, and Amber Settle. 2015. Benefits of Self-
explanation in Introductory Programming. Proceedings of the 46th ACM Technical

70

[54

[55

[56

[58

ICER '19, August 12-14, 2019, Toronto, ON, Canada

Symposium on Computer Science Education - SIGCSE ’15 68 (2015), 284-289.

Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. 2017. Data-
Driven Feedback Generator for Online Programing Courses. In Proceedings of
the ACM Conference on Learning @ Scale. 257-260.

Christopher Watson and Frederick W B Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 39-44.

Christopher Watson, Frederick W B Li, and Jamie L. Godwin. 2012. BlueFix: Using
crowd-sourced feedback to support programming students in error diagnosis
and repair. In Proceedings of the International Conference on Web-based Learning.
228-239.

Joseph Jay Williams, Tania Lombrozo, Anne Hsu, Bernd Huber, and Juho Kim.
2016. Revising Learner Misconceptions Without Feedback: Prompting for Reflec-
tion on Anomalies. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). ACM, New York, NY, USA, 470-474.

Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A Feasibility Study of Using Automated Program Repair for
Introductory Programming Assignments. In Proceedings of the Joint Meeting on
Foundations of Software Engineering. 740-751. http://dl.acm.org/citation.cfm?
doid=3106237.3106262

http://dl.acm.org/citation.cfm?doid=3106237.3106262
http://dl.acm.org/citation.cfm?doid=3106237.3106262

	Abstract
	1 Introduction
	2 Related Work
	2.1 Theoretical and Empirical Justifications.

	3 Design of Hint Support
	4 Study 1: Perceptions of Hints
	4.1 Methods
	4.2 Results: Interview Analysis

	5 Study 2: Learning and Performance
	5.1 Methods
	5.2 Results

	6 Discussion and Limitations
	6.1 Limitations

	7 Conclusion
	References

