
Just a Few Expert Constraints Can Help: Humanizing
Data-Driven Subgoal Detection for Novice Programming

Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes, Thomas W. Price
North Carolina State University, Raleigh, NC, USA

samarwan, yshi26, ivmeneze, mchi, tmbarnes, twprice@ncsu.edu

ABSTRACT
Feedback on how students progress through completing sub-
goals can improve students’ learning and motivation in pro-
gramming. Detecting subgoal completion is a challenging
task, and most learning environments do so either with expert-
authored models or with data-driven models. Both models
have advantages that are complementary – expert models
encode domain knowledge and achieve reliable detection but
require extensive authoring efforts and often cannot capture
all students’ possible solution strategies, while data-driven
models can be easily scaled but may be less accurate and
interpretable. In this paper, we take a step towards achiev-
ing the best of both worlds – utilizing a data-driven model
that can intelligently detect subgoals in students’ correct
solutions, while benefiting from human expertise in edit-
ing these data-driven subgoal rules to provide more accu-
rate feedback to students. We compared our hybrid “hu-
manized” subgoal detectors, built from data-driven subgoals
modified with expert input, against an existing data-driven
approach and baseline supervised learning models. Our re-
sults showed that the hybrid model outperformed all other
models in terms of overall accuracy and F1-score. Our work
advances the challenging task of automated subgoal detec-
tion during programming, while laying the groundwork for
future hybrid expert-authored/data-driven systems.

Keywords
Subgoals, Formative feedback, Data-driven hybrid models

1. INTRODUCTION
Formative feedback has been shown to be an effective form
of automated feedback that can improve students’ learning
and motivation [54, 38, 8, 20]. In programming, immediate
formative feedback during problem-solving is important be-
cause some problems require students to find one of many
correct solutions [16], and novices may be uncertain about
when they are on the right track [62]. This uncertainty may
lead some students to give up [43], and can also negatively

impact student confidence and motivation in computer sci-
ence (CS) [32]. Prior research has shown that immediate
feedback can address this, reducing novices’ uncertainty and
improving their confidence, engagement, motivation, and
learning [42, 8, 33, 21, 38, 39].

One effective form of immediate feedback is subgoal feedback
[40], which indicates students’ progress on specific sub-steps
of the problem. Feedback on subgoals offers special advan-
tages because it demonstrates how a student can break down
a problem into a set of smaller sub-tasks; which is a key to
simplifying the learning process [37, 38], and can promote
students’ retention in procedural domains [35]. To generate
such feedback, learning environments need to be able to do
subgoal detection, which is the process of detecting when a
student completes a key objective or sub-part of a program-
ming task (e.g. receiving and validating user input). How-
ever, subgoal detection during problem-solving is known to
be extremely challenging because it requires assessing stu-
dents’ intended problem solving approach rather than their
program output. In other words, it is difficult to automati-
cally evaluate whether a student completed a subgoal in the
middle of problem-solving due to the many possible strate-
gies that students can approach to solve a problem, even
when using test cases or autograders.

Historically, to provide feedback on subgoals, learning envi-
ronments have used expert-authored models, where human
experts encode a set of rules to predict solution strategies
that students might perform to complete a specific subgoal.
While expert models can generate accurate feedback with
interpretable explanations, they also require extensive hu-
man participation particularly for open-ended programming
tasks, where it becomes unmanageable to capture every pos-
sible correct solution [59]. More recently, data-driven (DD)
models, where the model learns rules from historical data,
have become more prominent models. This is because DD
models reduce the expert-authoring burden, and have the
potential to be easily scaled to more problems and contexts.
Moreover, DD models learn from multiple students’ solu-
tions, which makes it capture code situations that human
experts cannot easily perceive, particularly in open-ended
programming tasks [49, 45]. However, DD models are de-
pendent on the quality of the data, and may have lower accu-
racy than expert models [59, 48]; and, therefore, may some-
times provide misleading feedback in practice [48]. Both
of these models have strengths and weaknesses, and in this
paper we propose an approach that takes advantage of both.

Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes and
Thomas Price “Just a Few Expert Constraints Can Help: Humanizing
Data-Driven Subgoal Detection for Novice Programming”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 68-80.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

68 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



We present a hybrid approach that leverages both a data-
driven model and expert insights to detect subgoal com-
pletion during problem-solving block-based programs. Our
hybrid model is based on three main steps. First, we used
an unsupervised data-driven model to generate subgoal de-
tectors for a programming task, and represent them as a
set of human-interpretable and human-editable rules. Sec-
ond, this representation allowed us to evaluate the accuracy
of the subgoal detectors; particularly when they have inac-
curate detections. Third, we used human expert insights to
refine and fix rules that led to inaccurate subgoal detections.
These three steps resulted in a hybrid data-driven approach
that generates subgoal detectors with high accuracy, that
target expert-authoring effort only where improvements are
needed, and that can also be easily scaled to various prob-
lems and contexts.

We evaluated our hybrid data-driven model to a block-based
programming problem from an introductory CS classroom
against the same, fully data-driven (DD) model, but without
experts’ intervention. We evaluated the accuracy of both
models by comparing their subgoal detections on a given
programming task, to that of human experts, and we hy-
pothesize that our hybrid model will surpass the accuracy
achieved by the DD model. We found that the expert eval-
uations of subgoal detections achieved significantly higher
agreement with our hybrid model than that achieved with
the DD model. We also found that our hybrid model out-
performs the state-of-the-art supervised models: code2vec
[53], Support Vector Machine (SVM) [14], and XGBoost [9].
In addition, we present case studies of how the hybrid model
led to differing subgoal detections in student programs com-
pared to the DD model. We also discuss how we can close
the loop by applying our hybrid model in block-based pro-
gramming classrooms to provide students with immediate
feedback on subgoals.

In summary, in this paper we investigate this research ques-
tion: RQ: How well does a hybrid data-driven model com-
bined with expert insights perform compared to: 1) a data-
driven model without expert augmentation and 2) baseline
supervised learning approaches that leverage expert subgoal
labels? Our work provides the following contributions: (1)
we present a hybrid subgoal detection approach which com-
bines an unsupervised data-driven model with domain ex-
pertise to achieve the benefits of both data-driven models,
and expert models, and (2) we demonstrate how our hybrid
approach advances the state of the art in subgoal detection
in open-ended programming tasks over supervised and un-
supervised baselines, with an accuracy range of 0.80 - 0.92.

2. LITERATURE REVIEW
In this work, we investigate the challenge of automatically
detecting subgoals effectively. We propose a method that
involves a hybrid approach where human experts modify
data-driven models to build effective subgoal detectors. In
the following, we first review prior work on the immediate
feedback with a focus on subgoal feedback. Then, we review
prior work that involves merging machine and human ex-
pert intelligence to improve performance of machine learned
models. Finally, we review both state-of-the-art supervised
learning models and an unsupervised data-driven model that
we used for subgoal detection in a programming task.

2.1 Feedback and Subgoal Detection
Formative feedback is defined as a type of task-level feed-
back that provides specific, timely information to a student
in response to a particular problem, based on the student’s
current ability [54]. In a review of effective formative feed-
back in education, Shute shows that immediate formative
feedback is effective because it can improve students’ learn-
ing [11, 38] and retention [54, 44], particularly in procedural
skills such as programming [54]. Most intelligent tutoring
systems provide immediate feedback through identifying er-
rors (e.g. error detectors [5, 55], anomaly detectors [31], or
misconception feedback [25, 24]); however far less work has
been devoted to providing feedback on students’ subgoals.
Automated assessment systems (i.e. autograders) can pro-
vide feedback on correct subgoals by showing the passing
test cases using expert-authored models [7, 28, 26, 38]. For
example, most autograders use instructor test cases to check
for correct program output; however they require students
to submit an almost-complete program to obtain feedback
[7, 29]. As a result, this feedback is often not available in the
early stage of programming when timely feedback on sub-
goals is mostly needed. To provide timely subgoal feedback,
prior research has taken two exclusive approaches: expert-
authored approach and data-driven approach.

Expert-authored Approaches: Prior work has explored stu-
dent completion to subgoals by diagnosing students’ solu-
tions against expert models (e.g. constraint-based mod-
els [42]), even when a student has incomplete submissions,
to provide feedback on whether they are on track [27], or
whether they completed key objectives of short program-
ming tasks [38]. However, these systems often require ex-
tensive expert effort to create rules. To address this author-
ing burden, example-tracing tutoring systems infer tutoring
rules based on examples of potential student behaviors. This
still requires an author with some domain expertise, but
it allows rules to be constructed by non-programmers who
have domain expertise [2]. An expert can create different ex-
ample solutions to capture different solution strategies; and
augment them with hints or feedback. Example-tracing tu-
tors have been developed in multiple non-programming do-
mains like genetics [12], mathematics [1], and applied ma-
chine learning, and they have been shown to improve the
problem-solving process and student learning [2]. Despite
the accuracy of expert models in providing feedback on test
cases or correct features, which can be equivalent to sub-
goals, it is unclear how feasible they are in domains with
vast solution spaces and open-ended problems, such as in
programming tasks [59, 39, 25].

Data-driven Approaches: Data-driven approaches refers to
systematically collecting and analyzing various types of ed-
ucational data, to guide a range of decisions to help improve
the success of students [15, 50]. Data-driven models largely
avoid the need for expert authoring altogether by using prior
students’ correct solutions, instead of expert rules or instruc-
tor solutions, to learn patterns of correct solutions. This en-
ables automated assessment feedback on student code [21].
Many data-driven models work by executing a comparison
function that calculates the distance between students’ code
and all the possible correct solutions, and then compares
the path of the most close solution with that of the stu-
dent [47, 49, 59, 39]. While most data-driven methods have

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 69



been used to generate fine-grained feedback – such as hints
in the hint factory [58], little work has used these meth-
ods to generate subgoal feedback. For example, Diana et
al. developed a model that searches for meaningful code
chunks in student code to generate data-driven rubric crite-
ria to automatically assess students’ code [19]. Diana et al
show that a data-driven model can have agreement with that
of the experts [19]. In the iList tutor, Fossati et al. used
a data-driven model to provide feedback on correct steps,
where they assess student code edits as good, if it improves
the student’s probability to reach the correct solution, or
uncertain if a student spent more time than that taken by
prior students at this point [21]. Fossati et al. found that
this feedback was well-perceived by students, and improved
their learning [21]. However, data-driven models are depen-
dent on the similarity of the current student’s approach to
prior student submissions, making it difficult to control the
quality of their feedback [39, 51, 59, 46]. In a case study
paper, Shabrina et al. discuss the practical implications of
data-driven feedback on subgoals, showing that the quality
of feedback is important, even positive feedback, since inac-
curate feedback can cause students to spend more time on
a task even after they were done [51]. Because of such chal-
lenges and perhaps other reasons such as the inability for
individual instructors to augment autograder feedback, few
tools have been built to provide immediate feedback to stu-
dents on whether they have achieved subgoals during their
programming tasks [34].

2.2 Integrating Expert Knowledge into Mod-
els

In recent years, combining machine and human intelligence
has been extensively explored in a wide range of domains in-
cluding artificial intelligence and software engineering. For
example, Chou et al developed a virtual teaching assistant
(VTA) that uses teachers’ answers as human intelligence,
and machine intelligence to use teachers’ answers to locate
student errors, and generate hints [10]. Chou et al found
that these mechanisms reduce teacher tutoring load and re-
duce the complexity of developing machine intelligence [10].
In the software engineering domain, there is an emerging ap-
proach called collective intelligence that merges the wisdom
of multiple developers with program synthesis algorithms,
which has been shown to significantly improve the efficiency
and accuracy of program synthesis [61].

Human-in-the-loop methods are another effective trend that
use human intelligence to improve the efficiency of Machine
Learning models, while the model is learning [23, 56, 30,
63]. For example, Goecks introduces a theoretical founda-
tion that incorporates human input modalities, like demon-
stration or evaluation, to leverage the strengths and mitigate
the weaknesses of reinforcement learning (RL) algorithms
[23]. Their results show that using human-in-the-loop meth-
ods accelerates the learning rate of RL models, with a more
efficient sample, in real time [23]. Our work also uses human
intelligence to improve the accuracy of a machine learning
model; however, it does so after the model is trained.

In the educational domain, expert knowledge is widely ap-
plied to augment data-driven and machine-learned models
for problem solving and feedback. For example, in a logic tu-
tor that provides data-driven hints using students’ solutions,

Stamper et al. used an initial small amount of sample data
generated by human experts to enhance the automatic de-
livery of hints [57]. Moreover, example-tracing tutors allow
experts to specify moderately-branching solutions for open-
ended problems, allowing some intelligent tutors originally
implemented using complex expert systems to be almost
completely replicated to support practical learning needs [2].

2.3 Supervised Learning Models of Code Anal-
ysis

Supervised learning algorithms leverage labels created by
human experts, to guide the model search process. With
available labels, automated learning algorithms can be ap-
plied to the subgoal detection tasks for programming data.
As shown in [6], one baseline is to extract term frequency-
inverse document frequency (TF-IDF) features and uses tra-
ditional machine learning algorithms such as support vector
machines (SVM) [14] and XGBoost [9]. However, as word- or
token-based features such as TF-IDF lose important struc-
tural information from programming data [3], recent work
uses structural representations from code and a more com-
plex model structure to learn more complex features. For
example, Shi et al. applied a code2vec [4] model to detect
the completion of rubrics on student programming data [53].
In this work, we compared our hybrid data-driven model to
these existing supervised learning baseline models to check
our improvement on the subgoal detection task.

2.4 Data-Driven Subgoal Detection Model
Among the various data-driven models for detecting sub-
goals, or rubric items [39, 18, 19], we built our proposed hy-
brid model on top of an unsupervised data-driven subgoal
detection (DD) algorithm, presented in [64]. We applied
this algorithm on a programming task called Squiral (de-
scribed in Section 3) by running the following steps. First,
the algorithm extracts prior student solutions in Squiral as
abstract syntax trees (ASTs) [49, 47]. Then, it applies hier-
archical code clustering for feature extraction and selection
by: (1) extracting common code shapes, which are common
subtrees, in ASTs of correct students’ solutions (Figure 2
shows examples of code shapes); (2) filtering redundant code
shapes; (3) identifying decision shapes, which consist of a
disjunction of code shapes (i.e. C1 ∧ . . . ∧ Cn) that are
usually mutually-exclusive (e.g. a program uses a loop, or
a repeated set of commands, but not both), and (4) hierar-
chically clustering frequently co-occurring code shapes into
subgoals. In [64], the authors found a meaningful Cohen’s
Kappa (0.45) in agreement of the algorithm and expert sub-
goal detection on student data, suggesting that DD subgoals
could be used to generate feedback. However, since the DD
subgoals are typically represented in a regular-expression-
like form, labels are needed to make them meaningful and
usable for students in programming environments.

3. METHOD
This work presents and evaluates a hybrid data-driven model
for generating and detecting subgoals in a block-based pro-
gramming exercise (explained in Section 3.1). To evaluate
our hybrid data-driven approach, we applied our model on
student data collected from an Introduction to Computing
course, and we asked human experts to evaluate the accu-
racy of its subgoal detections (explained in Section 3.2.2).

70 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Figure 1: One possible solution for Squiral with line numbers
on the left, and the script’s output on the right.

We use this dataset to provide examples of how our ap-
proach works, but we also discuss how it can be generalized.
We compared our hybrid model against its underlying data-
driven (DD) model described above in Section 2.4, as well as
state-of-the-art supervised learning models (explained below
in Section 4.1).

3.1 Dataset
Our data is collected from a CS0 course for non-majors in
a public university in the United States that uses Snap!, a
block-based programming environment [22]. This program-
ming environment logs all students actions while program-
ming (e.g. adding, deleting or running blocks of code) with
the time taken for each step. These student logs (i.e. ac-
tions) can also be replayed as a trace of code snapshots of
all students’ edits – allowing us to detect the time and the
code snapshot where a subgoal is completed during student
problem-solving process.

In this work, we collected students’ logs from one homework
exercise named Squiral, derived from the BJC curriculum
[22]. Squiral requires a visual output, where students are
asked to write a procedure that takes one input ‘r’ to draw
a square-like spiral with r rotations. Figure 1 shows a pos-
sible correct solution of Squiral that requires procedures,
variables, and loops. We collected a training dataset from 3
semesters: Spring 2016 (S16), Fall 2016 (F16), and Spring
2017 (S17), which includes data of 174 students, that has a
total log data of 29,574 student actions

3.2 Hybrid Data-Driven Subgoal Detection
Our hybrid data-driven model is based on two main things.
First, the DD model is used to generate data-driven sub-
goals. Second, expert-authored constraints are added to
improve the quality of these subgoals and the accuracy of
their detection. We implemented our hybrid approach by
conducting the following 3 high-level steps:

1. We used the DD model to generate an initial set of sub-
goals, consisting of clusters of code shapes. We then
presented these clusters to experts in an interpretable
form, who combined them to create a concrete set of
meaningful subgoal labels.

2. We integrated DD subgoal detection model into the
students’ programming environment, allowing students
to see when the DD algorithm detected completion of
each subgoal. We then collected student programming

Figure 2: Three code shapes A, B, C, in both the data-driven
and hybrid models. Each code shape represents a false de-
tection and its fix by human experts. Red dashed nodes are
removed and green bold nodes are added.

log data along with DD detections, and asked experts
to evaluate the accuracy of the DD detections.

3. We used human expert insights to fix code shapes that
led to false subgoal detections; and then combined
them again to create a modified set of hybrid subgoals
and evaluated its new accuracy.

3.2.1 Step 1: Interpreting and Editing Data-Driven
Subgoals

The goal of this step is to generate data-driven subgoals
using the DD model and present them in an interpretable
and editable form. We applied the DD model (described
in Section 2.4) on S16, F16, and S17 student datasets to
generate a number of clustered code shapes. Column 1 in
Table 1 shows the description of 7 subgoals corresponding
to code-shape clusters generated from correct solutions (n
= 52). We evaluated each cluster by displaying its code
shapes separately and interpreted their code behavior. For
example, code shape A in Figure 2, on the left, represents a
decision shape that requires student to use the ‘ReceiveGo’

block (i.e. the hat block in Figure 1, line 1, which is used to
start a script) in their main script, or to evaluate a procedure
with one parameter, which is done by creating and snapping
a procedure in the main script (as shown in Figure 1, line 3).
We treated each cluster as a subgoal, and for a subgoal to be
detected, the DD model requires all of its code shapes, and
exactly one component of its decision shapes, to be present
in student code.

While the data-driven clusters can represent appropriate
subgoals, we combined some of them to create a shorter
list of higher-level subgoals similar to the programming task
rubric. Column 2 in Table 1 show the combined subgoals.
It is worth noting that we also took the insights of two in-
structors of the CS0 course on how meaningful these sub-
goals are for students to understand. Additionally, because

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 71



one of our goals is to use these data-driven subgoals in learn-
ing environments, we asked human experts to label them to
make them easily understandable by students, and instruc-
tors. For example, the human label of subgoal 1 is: “Create
a procedure with one parameter, and use it in your code”, as
shown in Table 1. We then developed a data-driven subgoal
detector that takes student code as an input, and outputs
the status of each subgoal. For example, if the input is code
C and the output is {1, 0, 0, 1}, this means the subgoal
detector detects the completion of subgoals 1 and 4, and the
absence of subgoals 2 and 3 in C.

3.2.2 Step 2: Investigating Data-Driven Subgoals
The goal of this step is to investigate the correctness of the
DD subgoal detections. In Spring 2020 (S20), we integrated
the DD subgoal detector into the Snap! programming en-
vironment for the Squiral exercise to provide students with
subgoal feedback [39]. In Snap!, students could see the sub-
goal labels (shown in Table 1), colored gray to start, green
when the subgoal was detected, or red when it became bro-
ken. We collected 4,480 edit logs from 27 student submis-
sions with an average of 166 edits per student in S20. For
each student edit, we recorded the DD subgoal detection
state (e.g. {1, 0, 0, 0} for subgoal 1 being complete). We
asked human experts to manually replay each student’s trace
data and evaluate whether the subgoal labels, as shown to
students, were achieved at the specific timestamps when the
DD algorithm detected them. Importantly, we asked ex-
perts to report when the expert-authored labels for each
subgoal (which students saw) were achieved. Since these
labels do not precisely match the code shape combinations
that the DD subgoal detector used, it was very possible for
the DD model to be “wrong.” In other words, we asked
experts to determine when each student achieved “Create
a Squiral procedure with one parameter and use it in your
code,” and compared that to when the DD detector marked
this subgoal label as complete.

We classified each evaluated instance as either Early, on-

Time, or Late. An instance is classified as Early if the DD
detection is before the human expert detection timestamp,
OnTime if they coincide, and otherwise Late. For example, if
for student Sj , the human expert detected the completion of
subgoal i (SGi) at time t = 5; while the algorithm detected
it at t = 2, then we label SGi for Sj as Early detection.
Then we sorted students in descending order based on the
percentage of false detections in their log data, and we took
the first 66% of this data (∼ 18 students as a data sample)
to investigate the reasons for false detections. We did not
use the full set of false detections, since our primary goal was
to fix the most common mismatches, without overfitting to
the dataset.

We then focus on false detections that occured due to new,
correct solutions, in the S20 dataset, that had no match-
ing code shapes in the training dataset (S16, F16, and S17
datasets). We do not investigate expected false detections
that occured due to known limitations in the DD algorithm
(e.g. the DD algorithm does not differentiate between vari-
able names).

We found three reasons for false detections for subgoals 1,
2, and 4. Inspired by the design of the constraint-based

SqlTutor by Mitrovic et al. [41], we introduce 3 fixes (or
constraints) to resolve them.

Subgoal 1 false detection. As shown in Table 1, subgoal 1 la-
bel requires a student to create a procedure with one param-
eter, and use it (or evaluate it) in the main script. However,
subgoal 1 code shapes consist of the creation and evaluation
of a procedure, or the use of a ‘ReceiveGo’ block (the hat
block used to start a script). This means that whether a
student created and evaluated a procedure, or added a ‘Re-

ceiveGo’ block in the main script, the DD model will detect
the completion of that subgoal, but experts did not inter-
pret the ‘ReceiveGo’ block as meeting this subgoal, yielding
a false detection. To fix this false detection, we simply re-
moved the ‘ReceiveGo’ block as an option for this subgoal.
Code shape A in Figure 2 shows the code shapes of subgoal
1 of the DD model (on the left), and how it is fixed in the
hybrid model (on the right).

Subgoal 2 false detection. As shown in line 6 in Figure 1,
subgoal 2 requires a student to use a ‘repeat block that iter-
ates 4 times the number of rotations to draw a Squiral with
the correct number of sides. While code shapes of this sub-
goal satisfy this definition, they also include a code shape of
adding a ‘pen down’ block, which is necessary to draw, but
only inside a procedure. Therefore, if a ‘pen down’ block
is used outside of a procedure, subgoal 2 will not be de-
tected. To fix this false detection, we added a disjunction
code shape to detect the presence of ‘pen down’ inside or
outside a procedure, as shown in code shape B in Figure 2.

Subgoal 4 false detection. As shown in lines 6-9 in Figure 1,
subgoal 4 requires the use of ‘move’, ‘turn’, and ‘change -
by -’ blocks (which increments a value of a variable), inside
a ‘repeat block’. We found that code shapes of subgoal 4
only include the ‘turnLeft’ block; however, if the student
solution contains a ‘turnRight’ block (which does the same
‘turn’ functionality but from a different direction), the sub-
goal will not be detected. To fix this false detection, we
modified all the code shapes that require the use of ‘turn-

Left’ block to accept either ‘turnRight’ or ‘turnLeft’

blocks, as shown in code shape C in Figure 2.

These three false detections show that prior solutions in S16,
F16, and S17 datasets often used a ‘ReceiveGo’ and ‘turn-

Left’ blocks, and used ‘pen down’ inside a procedure; but
this was not always the case in the S20 data. This shows that
investigating the accuracy of a model, either data-driven or
expert, is necessary since it is impossible to predict how stu-
dents will behave in practice or how the data will change
from one class to another.

3.2.3 Step 3: Improving the Data-Driven Subgoals
with Human Insights

The goal of this step is to apply the human expert con-
straints (explained in Step 2) to mitigate the false detections
of the DD algorithm. To do so, we developed a tool that
iterates over each code shape of the data-driven subgoals,
and allows humans to edit code shapes (i.e. add, delete or
modify) to apply the three constraints (i.e. fixes) explained
in Step 2. Because this tool modifies the code shapes, we
then use the original DD algorithm to re-cluster all code
shapes to ensure that the most similar code shapes remain

72 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Table 1: Data-driven subgoals (composed of code shape clusters) with their corresponding human labels that were used when
presented to students.

Data-Driven Code Shape Clusters Combined Clusters Subgoal Human Label
C1: Evaluate a procedure with one parameter on
the script area OR Add a ‘ReceiveGo’ block. C1 + C2 = Subgoal 1

Create a Squiral procedure with
one parameter and use it in your code.

C2: Create a procedure with one parameter.
C3: Have a ‘multiply’ block with a variable in
a ’repeat’ block OR two nested ‘repeat’ blocks. C3 + C4 = Subgoal 2

The Squiral procedure rotates
the correct number of times.

C4: Have a ‘pen down’ block inside a procedure
C5: Add a variable in a ‘move’ block inside a
‘repeat‘ block.

C5 = Subgoal 3
The length of each side of the Squiral
is based on a variable.

C6: Have a ‘move’ and ‘turnLeft’ block
inside a ’repeat’ block. C6 + C7 = Subgoal 4

The length of the Squiral increases
with each side.

C7: ‘Change’ a variable value inside a
‘repeat’ block.

clustered together. Figure 2 shows an example of three code
shapes before and after they have been edited by human ex-
perts, that fix false detections that existed for subgoals 1, 2,
and 4, respectively.

In summary, our hybrid model humanizes data-driven sub-
goal detection models through a series of important steps.
First, we apply a data-driven model to correct, historical
student solutions to generate a set of human interpretable
code shape clusters. Second, a human expert labels the
subgoals these clusters represent, in a way that is meant
to align with the original programming assignment. Third,
we collect data from students solving the same task using
a programming environment augmented with subgoal feed-
back (i.e human labels with colors) based on the DD subgoal
detector. Fourth, we had experts examine code traces with
the DD subgoal feedback to determine when the displayed
subgoal labels were actually achieved. Fifth, human experts
modified the code shapes that led to discrepancies between
the data-driven and expert detections for the displayed sub-
goals. This series of steps leverages the natural cycle of a
frequently-offered CS0 class to bootstrap the creation of DD
subgoal detectors in the programming environment.

4. EVALUATION
In this experiment, we applied both the hybrid and the DD
models to detect subgoals in students’ S20 code submissions.
We also asked two human experts to evaluate the presence or
absence of each subgoal in a subset of students’ code snap-
shots (sequential states of student code, corresponding to
their code edits, e.g., the addition or deletion of code blocks)
using the subgoal labels (shown in Table 1) as rubric items
(with 1 for the subgoal’s presence and 0 for its absence),
resulting in an expert (or gold standard) subgoal state.

Because S20 data consists of 4480 code snapshots, it is not
feasible to evaluate the models on every timestamp for two
reasons. First, students mostly need feedback on a given
subgoal when they are making edits towards finishing that
subgoal, not after every single edit they make. Second, stu-
dents break and recomplete subgoals frequently, even when
they are not working on a particular subgoal, and therefore
it is not meaningful to have an expert label at every sin-
gle datapoint. As a result, we evaluate the models at the

most meaningful times when a student is close to finishing
a subgoal, including: (1) the first time a student completed
a subgoal, according to a human expert, (2) up to five code
edits before that subgoal is completed, and (3) any time
when either model (i.e. hybrid, or DD) suggests a change
in a subgoal’s status. While these changes may or may not
be true, we wanted to have experts evaluate the correctness
of how the algorithms may have detected subgoal changes
at these points.

For each subgoal, two human experts evaluated 150, 163,
178, and 196 student snapshots for subgoals 1, 2, 3, and 4,
respectively, making a total of 687 labeled snapshot data-
points. The experts used the subgoals as their rubric; and
they started the labelling process by evaluating the first time
a subgoal is detected. To do so, they divided the data (27
students * 4 subgoals = 108 datapoint) into a set of 6 rounds,
where the first round consists of 2 students and the remain-
ing 5 rounds consists of 5 students. The two experts collabo-
ratively evaluated the first round together to make sure they
have a clear understanding of the rubric subgoals. Then for
the next two rounds, they evaluated the logs independently
and after each, they met to discuss and resolve conflicts.
For these 3 rounds, the two experts had a moderate to sub-
stantial agreement with a Cohen’s kappa ranging from 0.5
to 0.67. The reason why the kappa values are low is that
we considered any disagreement even if it was a difference of
one timestamp, but it does highlight how subgoal detection
can be subjective, which is a challenge for measuring the ac-
curacy of subgoal detection. As a result, for the remaining
data, the two experts continued to evaluate it independently
and then met to discuss and resolve conflicts to produce rel-
atively objective gold standard expert labels. We used these
labelled logs as ground truth to compare the accuracy and
F1-scores of both the DD and the hybrid models. We also
calculated the agreement between the expert detections and
those generated by the hybrid and DD models.

4.1 Supervised Learning Models
We also compared our hybrid humanized model with super-
vised machine learning models as another form of baseline.
The supervised models were trained and tested on the S20
dataset, using the same 687 expert-labeled snapshots de-
scribed above. We trained separate models to detect each of

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 73



the subgoal labels (using training/testing splits discussed
below). This allows us to directly compare these super-
vised methods, which require labeled training data, to the
DD model, which does not, and to our hybrid approach,
where the expert uses some of the labeled data to improve
the model. While we discuss some limitations to this com-
parison in Section 7, these baselines help contextualize the
performance of our subgoal detectors.

The baseline supervised machine learning models we have
chosen are two shallow models (SVM [14] and XGBoost [9])
and one deep learning model (code2vec [4]). We used the
same edits for predictions as the DD and hybrid models, and
extracted the term frequency–inverse document frequency
(TF-IDF) features from the models, thus a vector represen-
tation of an edit is generated, and used for training the two
models. We performed grid search cross validation for both
models. For SVM, we used a parameter space of linear kernel
and Radial Basis Function (RBF) [60] kernel, and searched
the regularization parameters from 1 to 10. For XGBoost,
we searched the subsampling space of 0.1 to 1, with the
number of estimators from 5 to 100, stepping by 5. Ten-
fold cross validation is performed to search the parameter
spaces. The training, validation, and test sets are split by
students to make sure that no students used for testing will
have an edit in training, since edits from one student would
be very similar, and using samples similar to the testing set
in training would lead to an unfair comparison.

We selected one state-of-the-art deep learning model, code2vec
[4], for comparison as well, as the model has recently been
applied in educational code classification tasks [53]. In-
stead of using a vector of term frequency to represent edits,
code2vec uses the structural representations from ASTs to
represent the code, and the representation is learned from
training a neural network1. We used early stopping to avoid
overfitting. To ensure the robustness of our results, we ran
20 times with resampling for all supervised baseline models,
and reported average metrics (e.g. F1-score, accuracy).

5. RESULTS
RQ1a: How well does a hybrid model perform compared to a
data-driven model without expert augmentation?

The prediction results for each subgoal from the DD model
and the hybrid model are shown in Table 2. Our hybrid
model achieves higher accuracy and F1-scores on all subgoals
than the DD model. In particular, it reaches > 0.8 accuracy
for all subgoals, and it reaches > 0.9 accuracy for 2 out of
the 3 subgoals that were modified (i.e. subgoal 1 and 4)
with expert constraints. It is worth noting that the hybrid
model achieves higher accuracy in subgoal 3, which was not
modified with expert constraints. This is possible because
after we modified code shapes for the other subgoals, we
reclustered the code shapes (as described in Section 3.2.3),
and the new code shapes for subgoal 3 were changed. This
is likely because, after reclustering, some code shapes moved
to subgoal 3, resulting in higher recall.

We also measured the agreement between human experts,
DD, and hybrid model subgoal detections. For the four sub-

1We applied code2vec using the process described in [53].

Subgoal 3 Subgoal 4

Subgoal 1 Subgoal 2

0 10 20 0 10 20

−400

−200

0

200

−400

−200

0

200

Students

N
um

be
r 

of
 E

di
ts

Model

DD

Hybrid

Figure 3: The number of code edits (y-axis) that occurred
between gold standard expert subgoal detections, and detec-
tions by the DD and Hybrid models, for first-time subgoal
detections for each student trace (x-axis).

goals, we find low to moderate agreement over all student
logs between DD and human expert detections, with Co-
hen’s kappa values ranging between 0.25-0.581. However,
we find substantial or better agreement between the hybrid
model and human expert detections, with Cohen’s kappa
values ranging between 0.6-0.84. It is worth noting that this
agreement is higher than that achieved between the two hu-
man experts (described in Section 4). These results showed
that the addition of just three human constraints to a data-
driven model succeeded in improving its accuracy, making
the hybrid model agree more with the gold standard (that
the experts co-constructed), than the experts’ original agree-
ment with one another.

We also determined the number of false detections (i.e. Early
and Late detections, as described in Section 3.2.2) for both
the hybrid and DD models. We found the DD model de-
tected 40.66%, 10.66%, 5.62% and 5.10% Early detections,
and 2%, 13.5%, 12.36%, and 15.31% Late detections for sub-
goal 1, 2, 3, and 4, respectively. However, our hybrid model
detected 1.33%, 13.5%, 10.67% and 4.6% Early detections,
and 8%, 5.52%, 1.7%, and 2.81% Late detections for subgoal
1, 2, 3, and 4, respectively. To visualize these false detec-
tions, Figure 3 visualized these false detections by presenting
the distance (i.e. how many edits) between the Early and
Late detections by both the DD and hybrid models, and the
gold standard human expert detections of the first time a
subgoal is completed. The x-axis presents the students (n =
27), and the y-axis presents the number of edits a student
makes until they complete a subgoal. We used a negative
number to indicate how much earlier the models were than
the gold standard detection, 0 to show when models agree
with the gold standard, and a positive number to show how
much later the models were. We also used empty circles to
indicate instances where a subgoal is never detected by the
models but it was detected by human experts. While Fig-
ure 3 shows only how early/late the model is in detecting
when a subgoal is first completed, this is likely the most
important detection. Our results suggest a high agreement
between the hybrid model’s detections with the gold stan-
dard, and a strong improvement over the DD model.

74 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Table 2: Precision, Recall, F1-score and Accuracy observed with Supervised, Data-Driven (DD) and our Hybrid Models.
Precision Recall F1-score Accuracy

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

Subgoal 1
(n = 150)

0.71 0.68 0.89 0.44 0.95 0.79 0.75 0.91 0.94 0.76 0.71 0.66 0.89 0.60 0.85 0.82 0.76 0.90 0.57 0.91

Subgoal 2
(n = 163)

0.58 0.61 0.57 0.70 0.69 0.61 0.77 0.79 0.63 0.85 0.55 0.66 0.64 0.66 0.76 0.74 0.75 0.75 0.77 0.81

Subgoal 3
(n = 178)

0.60 0.62 0.69 0.80 0.75 0.54 0.61 0.76 0.64 0.95 0.52 0.59 0.70 0.71 0.84 0.70 0.72 0.79 0.82 0.88

Subgoal 4
(n = 196)

0.62 0.64 0.64 0.79 0.87 0.64 0.75 0.84 0.55 0.93 0.59 0.66 0.69 0.65 0.90 0.76 0.74 0.75 0.80 0.93

RQ1b: How does a hybrid model perform compared to super-
vised learning approaches that leverage expert subgoal labels?

We show our comparison of supervised learning models and
the hybrid model in Table 2. On all subgoals, except one,
the hybrid model has higher accuracy and F1-score than
code2vec, SVM, and XGBoost models, outperforming them
by 0.10, 0.06 and 0.15 percent of F1-score, respectively. In
subgoal 1, we found that code2vec achieved a higher F1-
score than all the other models, and a relatively similar ac-
curacy to the hybrid model (0.903, 0.906). One possible
explanation for this is that subgoal 1 is the simplest sub-
goal, requiring only that the student has defined and used
a procedure, regardless of its content, and this simple code
pattern may have been easier for the supervised approaches
to learn. These results show that a hybrid model iteratively
constructed through cycles of student data collection, ma-
chine learning, along with human labeling and correction
can be used to create accurate automatic subgoal detections
on a novice programming task. Furthermore, these super-
vised learning models, that were mostly outperformed by
our hybrid model, were learned using labels from snapshots
that were strategically chosen to reflect important decision
points for the model, suggesting that the supervised models’
performance may suffer if a random selection of snapshots
were used to create an expert-labeled training set instead.

5.1 Case Studies
In this section, we present case studies to highlight ways the
hybrid model improved upon the original DD model, as well
as the hybrid model’s limitations. These case studies come
from the 33% of students who were not investigated when the
expert identified false detections in S20 from the original DD
model, as discussed in our methods (Section 3.2.2). These
students also used the original DD system, but their data did
not inform our hybrid model. These case studies, therefore,
help us understand the ways our hybrid model might help
new students, as well as limitations of the model. Though
our prior work suggests the DD subgoal detections over-
all were often useful to students [39], our post-hoc analysis
here shows that the false detections may have negatively im-
pacted student programming behavior, suggesting the need
for our hybrid model’s improvements.

5.1.1 Case Study 1 (Em): Inaccurate Data-Driven
Subgoal Feedback

We present here a case study of the student Em2 when they
received an inaccurate subgoal detection based on the DD
model, and how the hybrid model could have mitigated this
false detection.

Em started solving Squiral by snapping the ‘when green flag
clicked block’ (i.e. ‘ReceiveGo’ block) on the main script as
shown in Figure 4A, and the system falsely detected sub-
goal 1. Em then proceeded to work on subgoal 2, without
creating the required procedure, and created a loop using
the ‘repeat’ block nested with ‘move’ and ‘turnLeft‘ blocks
(shown in Figure 4B). This time, the system was correct
in not detecting subgoal 2 because the loop was not in a
procedure, and does not iterate on the ‘rotations’ param-
eter. Afterwards, Em correctly created a procedure with
one parameter as shown in Figure 4C; however, the system
shows no change, since it already falsely detected subgoal
1 earlier, and therefore, no change in the feedback is given
to the student. Em then destroyed the procedure, with-
out ever making it again. Em kept working for the rest of
the time on creating a number of redundant loops, similar
to the one in Figure 4C, with constant values to manually
draw the Squiral shape (rather than using a variable to vary
its length).

Em spent a total of 55 minutes to draw Squiral in an iterative
manner. While the DD system accurately detected subgoals
2-4 as incomplete, this case study highlights potential harm
that may have arisen from the false detection of subgoal 1.
When subgoal 1 was detected early, Em skipped over creat-
ing a procedure. Later, when she did create the procedure
correctly, she got no additional feedback (since the subgoal
was already detected), and promptly deleted it. Preventing
these unneeded deletions is a primary role of correct, pos-
itive subgoal feedback. However, had Em been using the
hybrid model, subgoal 1 would not have been detected early
because the expert edited the faulty code shape. We argue
that this might have allowed Em to keep working on creat-
ing a procedure (as shown in snapshot C in Figure 4), which
would have been detected as complete by the hybrid system
only at this time. It is also possible that receiving inaccu-
rate feedback at the very beginning may have led to Em’s
mistrust in the system, since prior work shows that incorrect
feedback can reduce students’ willingness to use it [48].

Note that, we do not believe this incorrect DD detection

2We provide anonymous names for students.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 75



Figure 4: Code snapshots A, B, and C, implemented by stu-
dent Em in Case Study 1.

means the full data-driven system should not be used since
our prior work shows the system can be helpful to students
[39]. However, we need to explore how to present subgoal
feedback in a way that promotes students to question the
feedback since any such program will inevitably fail to rec-
ognize some correct variants of a subgoal solution.

5.1.2 Case Study 2 (Jo): Cases when Hybrid Sub-
goal Detections could be Incorrect

We present here a case study where the hybrid model would
not have provided accurate subgoal feedback. As evidenced
by the model’s high overall accuracy (Table 2), these in-
stances were rare, but understanding them highlights the
affordances and limitations of our approach. Specifically,
we investigated subgoal 1, where the hybrid model had the
lowest F1-score.

Student Jo correctly created a procedure with a parameter;
however, since Jo had not yet used the procedure in their
main script, subgoal 1 was not detected (accurate detection).
Jo continued programming and completed subgoals 2 and 3,
which were accurately detected by the system. Afterwards,
Jo added a procedure call to the main script, and subgoal 1
was detected as complete (accurate detection). However, Jo
then added a ‘pen up’ block underneath the procedure call,
where unexpectedly, the hybrid model changed subgoal 1’s
status back to incomplete (incorrect detection).

This false detection in the hybrid model was due to an
overly-specific code shape. Specifically, the code shape re-
quired the procedure call to be the last block in the main
script (which was true for 94% of students, but not Jo), lead-
ing to the false detection. This case confirms the importance
of iteratively investigating and refining data-driven subgoal
detections to keep improving their accuracy, which is a com-
mon process in expert-authored models as well. While this
false detection has a straightforward fix, similar to the ones
presented in Section 3.2.2, it shows one limitation of the hy-
brid model: creating these fixes requires the expert to find
and address the false detections in the first place, which is
dependent on finding the bugs in the data inspected. This is
also one reason why the hybrid model performance of sub-
goal 1 has a lower F1-score than the code2vec model (as
shown in Table 2).

6. DISCUSSION
6.1 Automated Subgoal Detection
The key contribution of this paper is tackling the critical
challenge of automated subgoal detection during program-
ming tasks. Our results show that a hybrid data-driven
model meaningfully addresses this goal, with high accuracy

and F1 score when detecting subgoals at key moments dur-
ing students’ work. Our results show that this is a chal-
lenging task: even a state-of-the-art supervised learning ap-
proach with access to labeled data struggled to identify some
subgoals (F1 score as low as 0.64). This agrees with prior
work using expert-authored [13, 38] and supervised learning
models [53], showing that immediate feedback on subgoals
is a hard problem.

While automatically detecting subgoals is challenging, re-
search suggests that the ability to provide automated, im-
mediate feedback on subgoals can significantly improve stu-
dents’ motivation and learning. Providing subgoals for novices
can improve student learning by breaking down the pro-
gramming task into smaller subtasks, which is a challeng-
ing task for novices [36, 38]. In human tutoring dialogues
for programming, tutors provide a combination of corrective
and positive feedback, increasing students’ motivation and
confidence in programming [8, 33, 17]. Automatic subgoal
detection could be used to provide similar corrective and
positive feedback during programming. We know of only
3 systems that can afford such immediate feedback, that
is not based on unit tests, during programming, that have
been shown to promote learning, confidence and persistence
for linked lists [21], database queries [42], and block-based
programming [38]. It is perhaps uncommon to make such
systems due to the difficulty in anticipating all student ap-
proaches, paired with the high potential for inaccuracies and
student reactions to them. Our accuracy results suggest that
our hybrid, humanized approach can be used to build similar
automatic subgoal detection systems that could be deployed
and more easily scaled across problems in real classrooms.

6.2 Affordances of Data-driven, Hybrid and
Expert models

Our results suggest that the hybrid model has good poten-
tial for solving the problem of automated subgoal detection.
Here we discuss the advantages and trade-offs of the hybrid
approach, compared to data-driven and expert models.

6.2.1 RQ1.a: Hybrid versus Data-Driven Models
Our results show that a hybrid, iterative model that lever-
ages data-driven subgoal extraction, human labeling, and
expert refinement based on labeled student data, can greatly
improve model performance compared to a purely data-driven
(DD) model. The expert constraints improved F1-score of
the data-driven model by 0.14-0.25 points, as shown in Ta-
ble 2. Based on our analysis, the hybrid model, reduced the
number of Early and Late subgoal detections and increased
the onTime detections, when compared to the original DD
model, as shown in Figure 3. This is a critical improvement,
since prior work shows that the quality of feedback affects
novices’ programming behavior [48, 51], but also their self-
perceptions, and trust in the learning environment [48].

The hybrid model creation does require additional labelling
effort needed to evaluate the models; however, this effort
seems well worth it, and is needed to evaluate the accuracy
of any data-driven model before deployment. Compared to
prior work, our iterative hybrid model shares similar benefits
of “human-in-the-loop” methods in machine learning [56, 30]
and also represents data-driven rules in an interpretable and

76 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



editable form that simplified the process of merging human
insights into the model. In prior work, Diana et al. found,
qualitatively, that their generated data-driven rubrics are
considerably similar to human-generated rubrics [19]. Sim-
ilarly, in our work, not only did instructors agree with the
hybrid model subgoal detections, we also found these detec-
tions have substantial or better agreement with the human
expert gold standard than the DD model. From these re-
sults, we conclude that a hybrid model can be used to itera-
tively improve and humanize data-driven subgoal detection.

6.2.2 RQ1b: Hybrid versus Supervised Learning Mod-
els that Leverage Expert Subgoal Labels

Our results show that a hybrid model can surpass the per-
formance of supervised learning models. The steps we used
to create our hybrid model were to: (1) apply a data-driven
model, (2) add expert constraints, and (3) determine inter-
esting datapoints consisting of times when subgoals might
be achieved. The steps we used to create supervised learn-
ing models leveraged the interesting datapoints from step 3
of our hybrid model, hand-labeled them, and used them to
build supervised learning models. We highlight this to point
out that it is hard to determine what labeled data to use in a
supervised learning model for subgoal detection, since there
are hundreds of potential snapshots from each student. As
a result, it is unclear whether the supervised model would
have performed as well, compared to one learned from a
labeled dataset selected at random or regular timestamps.
Our results show that, even after using carefully selected
labelled data to train the model, the SVM and XGBoost
baselines did not achieve the level of accuracy of the hybrid
model for all subgoals. Even code2vec, the state-of-the-art
supervised learning model [53], has lower performance for all
subgoals, except subgoal 1, than the hybrid model. Perhaps
the code2vec performed worse due to the size of labelled
dataset (687 datapoints), though recent results suggest the
model is still effective with small datasets [52].

6.2.3 Hybrid versus Expert Models
Our hybrid approach offers distinct advantages and trade-offs
compared to expert-authored models for subgoal detection.
Traditional expert-authored models (e.g. constraint-based
tutors [42]) have the advantage of high accuracy and high
confidence, but the trade-offs of considerable domain expert
time for creation and the potential failure to anticipate some
student strategies and misconceptions. Our hybrid model
has the advantage of incorporating actual student strategies
and misconceptions, and primarily requires human effort to
label data and identify errors, tasks which can potentially be
done by non-experts and distributed across multiple people.
A domain expert is only needed to edit the automatically ex-
tracted rules and is afforded the chance to do so with actual
student data available. A significant tradeoff of the hybrid
model is its reliance on data - so the quality of the dataset
will directly impact the quality of the subgoal detectors.
Furthermore, both models are likely to need refinement as
students use them, and this process is already built into the
hybrid model creation and refinement cycle.

7. LIMITATIONS & CONCLUSION
This work has 5 main limitations. First, while the DD
model can capture small differences in solution approaches

in Squiral (like having whether a ‘turnLeft’ or ‘turnRight’
block), we have not tested it in programming tasks with
larger space of solution approaches. Therefore, it is not
known how well the accuracy results will generalize to other
types of programming tasks or languages. However, the it-
erative process of data collection, DD subgoal extraction,
labeling, and collection of data from students using the sub-
goal labels and detectors, could be applied for other pro-
gramming problems, of the same level as Squiral, and re-
peated until the models achieved high accuracy. Second,
some of S20 data that was used for models’ evaluation was
also used to inform expert constraints in the hybrid model.
However, this was only 66% of the data, and we discussed
above how the added constraints are generalizable, which
should have helped in any semester (see Section 5.1). Ad-
ditionally, our case studies in Section 5.1 show examples of
how the hybrid detector performed on unseen data, though
there was insufficient data for a quantitative evaluation.

Third, we used only the labelled S20 data to train the su-
pervised baseline models, but we also used 3 other semesters
of unlabeled data to train the unsupervised DD and hybrid
models. However, we argue that this ability to leverage a
larger unlabeled dataset is an advantage of the unsupervised
methods, rather than a limitation of our analysis. Fourth,
some of the datapoints that were labeled for the evaluation of
all the models were selected in part by using the hybrid and
DD model detections, as discussed above, and this might
have biased the results. However, all the models were evalu-
ated on these same datapoints that were strategically chosen
for their importance, and there are instances where some of
the supervised models outperformed the original DD model.
It is not clear how a different data selection strategy would
have affected the results, and we argue that training and
testing the supervised models on a dataset of the same size
with randomly selected snapshots would likely decrease the
performance of supervised models. Finally, we did not com-
pare the hybrid model to a purely expert-authored model,
and we did not measure time taken by experts to modify the
data-driven rules. We argue that these comparisons require
hiring experts to author rules and performing time analysis,
which is beyond the scope of this paper.

In summary, this work proposes a new paradigm for ‘hu-
manizing’ data-driven subgoal detection for novice program-
ming. Specifically, we proposed to humanize data-driven
subgoals in an iterative refinement process. We (1) extract
data-driven subgoals from student work, (2) give them hu-
man labels, (3) collect more data from students program-
ming with the labels and subgoal detectors, (4) present ex-
perts with the labels, and interpretable detectors, along with
student behavior data so they can add expert constraints.
This process ensures that humans are involved in every step
of the creation of automatic subgoals, offering the advan-
tages of reflecting real student behaviors, and limiting and
focusing expert authoring time. Our results show that this
hybrid humanized model outperforms fully data-driven mod-
els and state-of-the-art supervised learning models. This
proposed paradigm can be used to create humanized auto-
matic subgoal detection for tasks where it may be too expen-
sive to create full expert models for, but that are important
for student learning, motivation, and retention.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 77



8. REFERENCES
[1] V. Aleven, B. M. McLaren, and J. Sewall. Scaling up

programming by demonstration for intelligent tutoring
systems development: An open-access web site for
middle school mathematics learning. IEEE
transactions on learning technologies, 2(2):64–78, 2009.

[2] V. Aleven, B. M. McLaren, J. Sewall, M. Van Velsen,
O. Popescu, S. Demi, M. Ringenberg, and K. R.
Koedinger. Example-tracing tutors: Intelligent tutor
development for non-programmers. International
Journal of Artificial Intelligence in Education,
26(1):224–269, 2016.

[3] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. PLDI’18, 2018.

[4] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. POPL’19, 2019.

[5] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167–207, 1995.

[6] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton.
user2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In LAK’19, 2019.

[7] M. Ball. Lambda: An Autograder for snap. Technical
report, Electrical Engineering and Computer Sciences
University of California at Berkeley, 2018.

[8] K. E. Boyer, R. Phillips, M. D. Wallis, M. A. Vouk,
and J. C. Lester. Learner characteristics and feedback
in tutorial dialogue. In Proceedings of the Third
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 53–61. Association for
Computational Linguistics, 2008.

[9] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang,
H. Cho, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4), 2015.

[10] C.-Y. Chou, B.-H. Huang, and C.-J. Lin.
Complementary machine intelligence and human
intelligence in virtual teaching assistant for tutoring
program tracing. Computers & Education,
57(4):2303–2312, 2011.

[11] A. Corbett and J. R. Anderson. Locus of Feedback
Control in Computer-Based Tutoring: Impact on
Learning Rate, Achievement and Attitudes. In
Proceedings of the SIGCHI Conference on Human
Computer Interaction, pages 245–252, 2001.

[12] A. Corbett, L. Kauffman, B. Maclaren, A. Wagner,
and E. Jones. A cognitive tutor for genetics problem
solving: Learning gains and student modeling. Journal
of Educational Computing Research, 42(2):219–239,
2010.

[13] A. T. Corbett and J. R Anderson. Knowledge
decomposition and subgoal reification in the act
programming tutor. 1995.

[14] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[15] S. Custer, E. M. King, T. M. Atinc, L. Read, and
T. Sethi. Toward data-driven education systems:
Insights into using information to measure results and
manage change. Center for Universal Education at
The Brookings Institution, 2018.

[16] J. Denner and L. Werner. Computer programming in
middle school: How pairs respond to challenges.
Journal of Educational Computing Research,
37(2):131–150, 2007.

[17] B. Di Eugenio, D. Fossati, S. Ohlsson, and D. Cosejo.
Towards explaining effective tutorial dialogues. In
Annual Meeting of the Cognitive Science Society,
pages 1430–1435, 2009.

[18] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation
of rubric parameters from an educational
programming environment. In International
Conference on Artificial Intelligence in Education,
pages 490–493. Springer, 2017.

[19] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation
of rubric criteria from an educational programming
environment. In Proceedings of the 8th International
Conference on Learning Analytics and Knowledge,
pages 16–20, 2018.

[20] M. L. Epstein, A. D. Lazarus, T. B. Calvano, K. A.
Matthews, R. A. Hendel, B. B. Epstein, and G. M.
Brosvic. Immediate feedback assessment technique
promotes learning and corrects inaccurate first
responses. The Psychological Record, 52(2):187–201,
2002.

[21] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown, and
L. Chen. Data driven automatic feedback generation
in the ilist intelligent tutoring system. Technology,
Instruction, Cognition and Learning, 10(1):5–26, 2015.

[22] D. Garcia, B. Harvey, and T. Barnes. The beauty and
joy of computing. ACM Inroads, 6(4):71–79, 2015.

[23] V. G. Goecks. Human-in-the-loop methods for
data-driven and reinforcement learning systems. arXiv
preprint arXiv:2008.13221, 2020.

[24] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst.
Misconception-driven feedback: Results from an
experimental study. In Proceedings of the 2018 ACM
Conference on International Computing Education
Research, pages 160–168, 2018.

[25] L. Gusukuma, D. Kafura, and A. C. Bart. Authoring
feedback for novice programmers in a block-based
language. In 2017 IEEE Blocks and Beyond Workshop
(B&B), pages 37–40. IEEE, 2017.

[26] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic
assessment of programming assignments. In
Proceedings of the 10th Koli calling international
conference on computing education research, pages
86–93, New York, NY, 2010. ACM.

[27] J. Jeuring, L. T. van Binsbergen, A. Gerdes, and
B. Heeren. Model solutions and properties for
diagnosing student programs in ask-elle. In
Proceedings of the Computer Science Education
Research Conference, pages 31–40, 2014.

[28] D. E. Johnson. Itch: Individual testing of computer
homework for scratch assignments. In Proceedings of
the 47th ACM Technical Symposium on Computing
Science Education, pages 223–227. ACM, 2016.

[29] D. E. Johnson. Itch: Individual testing of computer
homework for scratch assignments. In Proceedings of
the 47th ACM Technical Symposium on Computing

78 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Science Education, pages 223–227, New York, NY,
2016. ACM.

[30] B. Kim. Interactive and interpretable machine learning
models for human machine collaboration. PhD thesis,
Massachusetts Institute of Technology, 2015.

[31] N. Körber, K. Geldreich, A. Stahlbauer, and
G. Fraser. Finding anomalies in scratch assignments.
arXiv preprint arXiv:2102.07446, 2021.

[32] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers. Acm
Sigcse Bulletin, 37(3):14–18, 2005.

[33] M. R. Lepper, M. Woolverton, D. L. Mumme, and
J. Gurtner. Motivational techniques of expert human
tutors: Lessons for the design of computer-based
tutors. Computers as cognitive tools, 1993:75–105,
1993.

[34] A. Luxton-Reilly, I. Albluwi, B. A. Becker,
M. Giannakos, A. N. Kumar, L. Ott, J. Paterson,
M. J. Scott, J. Sheard, and C. Szabo. Introductory
programming: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in
Computer Science Education, pages 55–106, 2018.

[35] L. E. Margulieux and R. Catrambone. Finding the
best types of guidance for constructing
self-explanations of subgoals in programming. Journal
of the Learning Sciences, 28(1):108–151, 2019.

[36] L. E. Margulieux, R. Catrambone, and M. Guzdial.
Employing subgoals in computer programming
education. Computer Science Education, 26(1):44–67,
2016.

[37] L. E. Margulieux, M. Guzdial, and R. Catrambone.
Subgoal-labeled instructional material improves
performance and transfer in learning to develop
mobile applications. In Proceedings of the ninth annual
international conference on International computing
education research, pages 71–78, 2012.

[38] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194–203, 2020.

[39] S. Marwan, T. W. Price, M. Chi, and T. Barnes.
Immediate data-driven positive feedback increases
engagement on programming homework for novices. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’20, 2020.

[40] J. McKendree. Effective feedback content for tutoring
complex skills. Human-computer interaction,
5(4):381–413, 1990.

[41] A. Mitrovic and S. Ohlsson. Evaluation of a
constraint-based tutor for a database language. 1999.

[42] A. Mitrovic, S. Ohlsson, and D. K. Barrow. The effect
of positive feedback in a constraint-based intelligent
tutoring system. Computers & Education,
60(1):264–272, 2013.

[43] D. Palmer. A motivational view of
constructivistâinformed teaching. International
Journal of Science Education, 27(15):1853–1881, 2005.

[44] G. D. Phye and T. Andre. Delayed retention effect:
attention, perseveration, or both? Contemporary

Educational Psychology, 14(2):173–185, 1989.

[45] T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the ACM Technical
Symposium on Computer Science Education, 2017.

[46] T. W. Price, Z. Liu, V. Catete, and T. Barnes. Factors
Influencing Students’ Help-Seeking Behavior while
Programming with Human and Computer Tutors. In
Proceedings of the International Computing Education
Research Conference, 2017.

[47] T. W. Price, R. Zhi, and T. Barnes. Evaluation of a
Data-driven Feedback Algorithm for Open-ended
Programming. In Proceedings of the International
Conference on Educational Data Mining, 2017.

[48] T. W. Price, R. Zhi, and T. Barnes. Hint Generation
Under Uncertainty: The Effect of Hint Quality on
Help-Seeking Behavior. In Proceedings of the
International Conference on Artificial Intelligence in
Education, 2017.

[49] K. Rivers and K. R. Koedinger. Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving
Python Programming Tutor. International Journal of
Artificial Intelligence in Education, 27(1):37–64, 2017.

[50] C. Romero and S. Ventura. Educational data mining
and learning analytics: An updated survey. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 10(3):e1355, 2020.

[51] P. Shabrina, S. Marwan, T. W. Price, M. Chi, and
T. Barnes. The impact of data-driven positive
programming feedback: When it helps, what happens
when it goes wrong, and how students respond. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’20, 2020.

[52] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for
automatic bug detection in student code. EDM, 2021.

[53] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th
International Conference on Learning Analytics
Knowledge (LAK 21), 2021.

[54] V. J. Shute. Focus on formative feedback. Review of
educational research, 78(1):153–189, 2008.

[55] D. Sleeman, A. E. Kelly, R. Martinak, R. D. Ward,
and J. L. Moore. Studies of diagnosis and remediation
with high school algebra students. Cognitive Science,
13(4):551–568, 1989.

[56] R. Souza, L. Neves, L. Azevedo, R. Luiz, E. Tady,
P. R. Cavalin, and M. Mattoso. Towards a
human-in-the-loop library for tracking hyperparameter
tuning in deep learning development. In LADaS@
VLDB, pages 84–87, 2018.

[57] J. Stamper, T. Barnes, and M. Croy. Enhancing the
automatic generation of hints with expert seeding.
International Journal of Artificial Intelligence in
Education, 21(1-2):153–167, 2011.

[58] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 79



Researchers Track, pages 71–78, 2008.

[59] D. Toll, A. Wingkvist, and M. Ericsson. Current state
and next steps on automated hints for students
learning to code. In 2020 IEEE Frontiers in Education
Conference (FIE), pages 1–5. IEEE, 2020.

[60] J.-P. Vert, K. Tsuda, and B. Schölkopf. A primer on
kernel methods. Kernel methods in computational
biology, 47:35–70, 2004.

[61] D. Wang, W. Dong, and Y. Zhang. Collective
intelligence for smarter neural program synthesis. In
2020 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW),
pages 98–104. IEEE, 2020.

[62] L. E. Winslow. Programming pedagogy—a
psychological overview. ACM Sigcse Bulletin,
28(3):17–22, 1996.

[63] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and
A. Parameswaran. Accelerating human-in-the-loop
machine learning: challenges and opportunities. In
Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning,
pages 1–4, 2018.

[64] R. Zhi, T. W. Price, N. Lytle, and T. Barnes.
Reducing the State Space of Programming Problems
through Data-Driven Feature Detection. In
Proceedings of the Educational Data Mining in
Computer Science Education Workshop at the
International Conference on Educational Data Mining,
2018.

80 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)


