
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 1

iSnap: Evolution and Evaluation of a Data-Driven
Hint System for Block-based Programming

Samiha Marwan, and Thomas W. Price

Abstract—Novice programmers often struggle on assignments,
and timely help, such as a hint on what to do next, can help
students continue to progress and learn, rather than giving
up. However, in large programming classrooms, it is hard for
instructors to provide such real-time support for every student.
Researchers have therefore put tremendous effort into developing
algorithms to generate automated, data-driven hints to help
students at scale. Despite this, few controlled studies have directly
evaluated the impact of such hints on students’ performance,
and learning. It is also unclear what specific design features
make hints more or less effective. In this work, we present
iSnap, a block-based programming environment that provides
novices with data-driven, next-step hints in real-time. This paper
describes our improvements to iSnap over 4 years, including its
“enhanced” next-step hints with three design features: textual
explanations, self-explanation prompts and an adaptive hint dis-
play. Moreover, we conducted a controlled study in an authentic
classroom setting over several weeks to evaluate the impact of
iSnap’s enhanced hints on students’ performance and learning.
We found students who received the enhanced hints perform
better on in-class assignments and have higher programming
efficiency in homework assignments than those who did not
receive hints, but that hints did not significantly impact students’
learning. We also discuss the challenges of classroom studies and
the implications of enhanced hints compared to prior evaluations
in laboratory settings, which is essential to validate the efficacy
of next-step hints’ impact in a real classroom experience.

Index Terms—next-step hints, data-driven hints, block-based
programming

I. INTRODUCTION

PRogramming is a vital skill in many disciplines, as evi-
denced by the large number of introductory programming

courses offered in K-12 and university settings (including
for non-CS majors [1]). However, recent surveys show that
learning how to program is challenging for students in early
programming stages; as concluded in a 2019-survey of Com-
puter Science (CS) failure rates: “It appears that introducing
students to computing is still one of computing education’s
grand challenges [2].” A fundamental challenge for many stu-
dents is simply getting through the programming assignment –
if students get stuck and help is not available, they may grow
frustrated or negatively self-assess their programming ability
which can lead them to give up or leave the field entirely
[3]. When students are unsure how to proceed, a promising
way to help them is by providing a next-step hint, which
typically suggests an edit that the student should make to
their program to bring it closer to a correct solution, allowing
them to proceed. Automated hints, provided by the learning
environment, are particularly useful in large classrooms in
situations when the instructor is not available, or when other
factors (e.g. fear of looking unintelligent [4]) prevent students
from asking for help from course staff [5].

One way to generate these hints is using data-driven
methods. Unlike traditional “expert models,” which require
an expert to author each hint and define rules for when it
applies (e.g. [6], [7], [8]), data-driven programming hints can
be generated automatically using a dataset of solutions [9],
[10], [11], [12], e.g. from students in a prior semester. This
allows them to scale easily to new problems and contexts.
Additionally, some prior evaluations of data-driven hints show
that they can approach the quality of expert-authored hints
[9], [13], [14]. However, data-driven hints suffer a number of
challenges that limit their impact on students’ performance and
learning in classrooms. First, next-step hints are “bottom-out”
hints [15], telling students what to do, not why, and therefore,
students may not fully understand the hint [16]. Second, these
hints do not engage students in sense-making (i.e. reflecting
on the hint to understand its meaning), which is an essential
component of learning [17]. Third, next-step hints are usually
on-demand hints, and students may avoid hints when they
need help, or abuse them to solve the problem without trying
– unproductive help-seeking behaviors can harm students’
learning [18]. In this paper, we first present the iSnap system,
which we have been improving and evaluating for the past
4 years. iSnap is an extension to the Snap! block-based
programming environment, and the first system to provide
real-time data-driven next-step hints to students in a block-
based environment [15]. We highlight how the iSnap system
has evolved to include enhanced hints that incorporate three
specific design features: textual explanations, self-explanation
prompts, and adaptive hint display, that address next-step
hints’ challenges mentioned above.

Additionally, there has been little work evaluating the im-
pact of automated, next-step programming hints (whether data-
driven or not) on students’ outcomes [19], [15], [16]. The
evaluations that have been done have a few key limitations
that leave open research questions about how to apply data-
driven hints in the classroom. First, most of these evaluations
have been limited to technical assessments [20], using few
(i.e. 1-2) programming assignments [21], [22], [11]. Second,
most of these studies have been in limited, laboratory set-
tings [23], [22], [24], which limits our understanding of the
impact of hints on students in authentic classrooms. Third,
the few studies that have used good measures in authentic
classroom settings have had conflicting findings on the impact
of data-driven hints on students’ outcomes [19], [11], with
some suggesting hints can lead to improvement in students’
performance and learning [12], [11], and others showing little
to no impact [19], [25]. The inconsistency of these results
is in large part due to the variety of ways that hints can be
displayed which are not always articulated or evaluated in a



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 2

way that helps us understand why hint evaluations lead to
differing results.

To address these limitations of prior evaluations, this paper
also presents an evaluation of the iSnap system through
a controlled study, taking place in an authentic classroom
setting, over four weeks across multiple assignments, lever-
aging several assessment mechanisms (e.g. surveys, and post-
tests) to show how iSnap’s enhanced hints impacted students’
performance and learning. This study serves as a conceptual
replication of prior evaluations of the iSnap system in a
laboratory setting [11] and evaluates how robust these results
are when generalizing to a different learning context and
population. Replication is a critical contribution of this work,
since prior work on data-driven hints lacks such replications,
and has reached conflicting findings on their efficacy. For
example, will enhanced next step hints be as effective for
students in an authentic classroom, with different, complex
assignments over multiple weeks, as they are in short-term
laboratory studies? We also explore how factors such as
problem difficulty or hint quality can mediate the impact of
next step hints on students’ performance [26], [27], which are
not well-explored in prior work.

In this paper, we investigate the following research ques-
tions: In a classroom setting, what is the impact of enhanced
next-step hints on students’ RQ1:) programming performance
and RQ2:) learning; RQ3:) how do students perceive these
hints? and RQ4: how does problem difficulty and hint quality
mediate the effect of enhanced next-step hints on students’
outcomes? Our classroom study results show that enhanced
hints have an overall positive, significant impact on students’
performance on in-class programming assignments. In addi-
tion, we found that such enhanced hints significantly improved
students’ programming efficiency on homework tasks when
hints were available. However, we did not find conclusive
evidence that hints improved students’ learning. Overall our
results suggest that automated next-step hints, when well-
designed, can be very useful to students, playing a necessary
role in an authentic classroom setting with limited human
support, and do not harm learning (as in prior work [18]),
despite giving away part of the solution.

In summary, the primary contributions of this work are:
1) The iSnap system that provides enhanced, data-driven

hints, including explicit different design features to
improve the effectiveness of these hints.

2) An empirical evaluation of iSnap’s enhanced hints on
students’ outcomes in an authentic classroom setting,
and how the impact of hints can be mediated with con-
textual factors, i.e. problem difficulty and hint quality.

II. RELATED WORK

Research in computing education research has developed
several educational tools that generate automated hints to
support students in programming. In this section we review
how hints can be effective from a theoretical perspective, prior
work on hint generation techniques (especially data-driven
approaches), and empirical evaluations on the impact of these
hints.

Theoretical Perspectives on How Hints can Improve Stu-
dents’ Performance and Learning: As Aleven and Koedinger
argue [18], from a theoretical perspective, the most funda-
mental reason to provide hints to students is to help the
student complete a problem when they are struggling and
might otherwise give up, increasing the amount of learning
content the student engages with. However, cognitive theories
shed light on other ways that hints may promote learning. First,
the ACT-R (Adaptive Control of Thought - Rational) cognitive
theory posits that learning problem solving requires two types
of interrelated knowledge: declarative knowledge, which is a
set of known facts or goals (such knowing what a variable
is), and procedural knowledge, which is a set of production
rules that specify how to reach a goal (such as knowing how
to use a variable) [28], [29]. Under this theory, principle-
based hints that explain a domain concept can support students
to acquire declarative knowledge, though not all automated
hints contain such explanations. Hints can also contextualize
procedural knowledge by connecting a problem-solving step
to a relevant domain concept [30]. Second, the Knowledge-
Learning-Instruction (KLI) framework [17] suggests that hints
can prompt the acquisition of declarative knowledge by en-
gaging the student in sense-making of hints, such as reasoning
or self-explaining the hint. Aleven and Koedinger argue that
this self-explanation process is essential to achieve learning
from hints, but that it is unlikely to occur spontaneously
[18], and should therefore be actively supported by the hint
system. Third, Aleven et al., noted that students generally
lack the ability to seek help effectively, which obstructs the
ability of learning environments with feedback to improve
students’ learning [31]. Wood’s theory of contingent tutoring
emphasized that the tutor’s help should be contingent upon the
learner’s needs to improve their learning [32]. The basic idea
of contingent tutoring is that “when a learner has been set or
is trying to achieve a goal and seems to be ‘in trouble’, then
the contingent (human) tutor immediately offers help (page 2,
[32])”. This theory reveals that it is not only the content of the
hints that can increase their effectiveness, but also how/when
we are providing students with these hints can affect their
impact on students’ performance and learning. These theo-
retical perspectives suggest how hints may promote students’
performance and learning, and also reveal the importance of
how hints could be designed and presented to achieve that
goal, which is our focus in this work. These theoretical models
emphasize that learning happens from next-step hints primarily
when students are presented with hints that include domain
knowledge, and foster reflection on this knowledge, at the
time when a student is struggling. We discuss how our design
choices for iSnap’s enhanced hints align with these goals in
Sections III-B, III-C, and III-D.

Hint Generation: Automated hints are primarily generated
either using expert-authored rules – such as in constraint-based
[6] or model tracing approaches [8], [33] – or using data-driven
methods that leverage historical data to generate hints [9],
[12], [15]. We focus in this paper on data-driven hints, which
are particularly promising because they require little expert
effort to support new problems, and can scale to multiple
solution strategies, which is an essential feature for supporting



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 3

students in open-ended programming assignments [19], [10],
[34]. Personalized, data-driven hints have been successfully
generated to support many programming languages, such as
python [19], Java [35], [36], Prolog [37], C++ pseudocode
[12], and block-based programming languages [15], [10].
These hint-generation algorithms use a variety of approaches,
but many align with the original Hint Factory approach [38],
originally used in the domain of logic. This approach uses
prior student data to model how successful students solve
the problem, and then uses this model to guide struggling
students to take actions that successful students would take
in a similar situation. In Section III-A we provide a more in-
depth explanation of one hint generation approach. However,
the focus of this paper is on the way a hint system presents
these hints to students – not the algorithm itself – and the
particular design challenges that come along with data-driven
hints (detailed in Section III), such as interpretability [39],
[16], fostering learning, and help abuse or avoidance [18], [22].

Empirical evaluations: Most evaluations of next-step hints
have focused on technical aspects of the hint generation
process, such as how often the system can generate a correct
hint [40], or expert ratings of the quality of the generated
hint (e.g. whether it can resolve a mistake or a missing
step in students’ code) [13]. For example, Hartmann et al.
evaluated their HelpMeOut system by deploying it during a
programming workshop, and they manually labeled the hints
that the system generated as “Helpful” or “Not Helpful”
[14]. They found that 47% of hint requests returned helpful
suggestions. Another example is the ITAP tutoring system
developed by Rivers et al., which offers data-driven hints for
Python programming. Rivers et al. found that the ITAP tutor
is able to construct a set of hints leading to a solution for 98%
of incorrect solution attempts [9].

While good hint quality is important for hints to be useful
[39], it is also no guarantee of hints’ impact on students’
performance and learning. For example, ITAP’s data-driven
hints were found to approach the quality of human-authored
hints [9], [19], [41]. However, Rivers found no difference in
learning between students with and without ITAPs hints, and
only suggestive evidence that hints helped students complete
practice problems faster [19]. Choudhury et al. found that their
data-driven style feedback helped students who had already
completed programming problems to significantly improve the
quality of their solutions, but they did not evaluate learning
on a post-test without hints [42].

In addition, prior studies on the impact of data-driven
next-step hints on students’ outcomes have shown different,
and sometimes conflicting, findings, even for the same pro-
gramming language [12], [19], [25]. This might be due to
differences in how hints are presented by the system, or the
information the hints provide, such as combining hints with
other forms of feedback [12], [6]. For example, Fossati et
al. found that the iList tutor (a tutor teaching linked lists, a
skill related to programming) that provided next-step hints in
addition to other forms of automated support (such as positive
feedback) improved students’ performance [12]. However,
Price et al. found that data-driven next-step hints, in the form
of code highlights (i.e. highlighting code to be inserted and

crossing out code to be deleted), in a Python programming
environment had no effect [25]. This reveals the importance of
understanding which design features are necessary to improve
the effectiveness of automated hints, and in which situations
they were or were not helpful, as well as the importance of
replicating these evaluations in different contexts. In 2016,
Ahadi et al. published a review on replication in computing
education research discussing different reasons why replication
studies are needed, such as to “verify earlier work”, or to
“elucidate which other factors may be relevant” or “rule out the
effects of site-specific factors” [43]. In Section III we present
results from our earlier laboratory evaluations of iSnap, and
our goal in this work is to investigate how well these findings
generalize to a different learning context and population.

Other studies have shown that automated (but not fully data-
driven) programming hints can improve students’ performance
and learning. In the Lisp Tutor, students with a variety of
automated feedback learned significantly more than those
without feedback, measured by a post-test with no hints [7].
Gusukuma et al. [33] found that students with their automated
misconception-driven feedback performed significantly better
on an immediate post-test than those without, but not a delayed
post-test. These studies offer some evidence that automated
programming feedback can improve learning. However, none
of these systems was fully data-driven, and the feedback
included instructor-authored messages and rules that may be
difficult to scale to new problems. It is therefore still an open
question whether fully data-driven hints can positively impact
learning. Additionally, more work is needed to investigate how
laboratory studies [7], [11], [42] will generalize to authentic
classroom settings, as we do in this work.

III. ISNAP SYSTEM DESIGN

In this section, we present the evolution of iSnap – an
extension to the Snap! block-based programming environment.
iSnap can generate data-driven next-step hints automatically
(as we describe in Section III-A) that can bring student
code closer to the correct solution, with the goal of helping
students progress and get unstuck during programming. This
is important because improving students’ progress will result
in improving their programming performance, especially when
instructor help is unavailable or it is difficult for students to
access due to social or logistical barriers.

In addition to this goal, we strived to improve the impact
of next-step hints with three other new design goals. Our
first design goal is to help students understand why the hint
was given, not just what to do next. This goal stems from
previous evaluations of next-step hints [19], [25], [5], where
many students noted that hints could be difficult to interpret.
For example, one student in a study on iSnap noted that hints
were, “unhelpful, mostly because I wasn’t quite sure why it
was offering the help that it was offering. It was just like,
here’s a suggestion- but why?” [5]. Our second design goal
is to encourage students to self-explain the hint, and reflect on
why it is needed. Traditionally, next-step hints are “bottom-
out” hints, telling the student exactly what to do, without
requiring them to reason about the information. Aleven et al.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 4

argue that while such bottom out hints are necessary to help
students who are stuck; however, they do not engage students
in sense-making (i.e. reflecting on the hint to understand its
meaning), which is an essential component of learning [17].
The third design goal is to help students seek this help
productively. In prior work, most tutoring systems provide
hints on-demand (i.e. upon a student’s request). However,
literature on help-seeking shows that novice students may
avoid requesting hints when they need them, or may keep
requesting and following them blindly to reach the correct
solution, indicating an unproductive help-seeking behavior,
which correlates negatively with learning [18]. Over the past
4 years we have been improving the design of iSnap hints
to implement and evaluate these design goals; and investigate
how they can be implemented in a way that makes iSnap hints
overall more effective and increase their impact on students’
performance and learning.

The interface of iSnap is displayed in Figure 1. When
students use iSnap, it displays a menu of a set of programming
assignments, where they can choose which assignment they
want to solve. While students are programming, the iSnap sys-
tem pops up a hint button attached to student code (as shown in
Figure 1 A) when it detects that the student is struggling, using
an adaptive hint display feature described in Section III-D.
If a student clicks on the hint button a hint dialog appears,
which includes 3 primary elements: 1) The next-step hint,
which communicates a suggested code edit through a “diff”,
contrasting the student’s current code (left) with suggested
code (right), and highlighting the block to be added (or re-
ordered). For example, in Figure 1 B, the suggested hint is to
add the “repeat” block. 2) A textual explanation, as shown
in Figure 1 C, which explains in plain language the suggested
next-step hint, within the context of the specific assignment
the student is working on. 3) a self-explanation (SE) prompt,
as shown in Figure 1 D, which prompts the student to self-
explain the suggested hint. The adaptive hint display, the
textual explanation, and the SE prompts are the 3 new design
features we added to the next-step hints to address our 3
design goals mentioned above, respectively. Figure 1 E shows
the “swap roles” button which is a separate addition feature
to iSnap discussed in Section IV-D3. Below, we describe
the mechanism of generating next-step hints (Section III-A),
followed by the mechanism of each design feature with our
prior evaluations (Sections III-B, III-C, and III-D).

A. Generating Next-step Programming Hints

iSnap’s next-step hints are generated by the data-driven
SourceCheck algorithm. The algorithm is described in de-
tail in [10], [13], and we provide a simplified explanation here.
SourceCheck uses a database of correct solutions (represented
in the form of Abstract Syntax Trees (ASTs)) for a given
problem to generate hints automatically. To provide students
with next-step hints in real time, after every code edit, the
SourceCheck algorithm uses a code-specific distance metric
to select the solution in its database that the student has made
the most progress toward. It then calculates a set of edits
(i.e. hints) to bring the student’s code closer to the correct

solution. The algorithm then prioritizes the hints (e.g. based
on their order in the student’s code). The current version of
iSnap selects the earliest unseen hint to display to the student.
The SourceCheck algorithm generates personalized hints
that match the current student’s solution strategy, if one exists
in the solution database. The database of correct solutions used
to generate hints can come from any source. The first version
of the iSnap system generated hints from historically correct
student solutions collected from prior semesters [15], since
this data is readily available. However, later work showed that
higher quality hints can be generated using solution templates,
which define a variety of possible solution approaches, au-
thored by instructors [13]. While different versions of iSnap
have used different data resources, the evaluation presented in
this paper uses the instructor-based solution templates.

Figure 1 shows an example of a next-step hint provided
to a student while programming Polygon Maker exercise (de-
scribed in Section IV-C). This hint suggests the next expected
code block to be added in student code, which is the “repeat”
block (i.e. a loop) – necessary to draw sides of the polygon
based on a given number of sides. This example clarifies
how the suggested data-driven next-step hint can help student
progress, not only by suggesting which block to use, but also
by visualizing where to place this code block.

B. Textual Explanation Design

The first support feature added to next step hints is a textual
explanation, which is a brief expert-authored text explanation
accompanying a next-step hint. This feature addresses our
first design goal, which is to make hints more interpretable
to students. Unlike fully data-driven approaches, these tex-
tual explanations require manual expert effort. Prior work
shows that the presence of instructional explanations can help
students understand why and when certain procedures are
appropriate in example problems [44], [8], which can help
students acquire declarative and procedural knowledge needed
to improve their learning as stated in the ACT-R cognitive
theory [28]. We therefore expect that the effort needed to
author textual explanations to data-driven next-step hints is
worthwhile and would similarly help students to understand
hints, and improve students’ outcomes during problem solving.

As suggested by prior work [6], [10], we designed the
textual explanations to include three pieces of information: (1)
What the suggested code block (i.e. the hint) does, (2) how it
is related to the programming assignment, and (3) where the
suggested block can be found. As shown in Figure 1 C, a next
step hint that suggests the addition of a “repeat block” in the
Polygon Maker exercise has the following textual explanation:
“The repeat block (under Control) allows you to run the
same code a fixed number times, like drawing each side of a
polygon”. For each programming task, we manually authored
textual explanations for each block in instructor-based solution
templates. We then labeled each block in the correct solution
AST with one or more relevant textual explanations. When
the iSnap system suggests any next-step hint, it displays the
corresponding textual explanation as well. If there is more than
one textual explanation for a given block, the system displays



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 5

Fig. (1) The iSnap block-based programming environment. When the hint button (A) is clicked, a suggested next-step hint
(B) is displayed, augmented with a textual explanation (C) and a self-explanation prompt (D). A “swap roles” button (E) is
added on top to allow pair programming.

the first explanation that the student has not yet seen. We
sometimes created multiple textual explanations for a given
block in the solution to provide different forms of information
to help students better understand the next-step hint, without
giving them redundant information. A similar approach has
been used in the MistakeBrowser system to annotate hints
generated with student data as well [45].

In our prior evaluations of iSnap, we compared the im-
pact of adding textual explanations to next-step hints [16],
[11]. We found in a laboratory study that participants who
were provided with hints augmented with textual explanations
(experimental group) perceive iSnap’s support as significantly
more useful, relevant and interpretable and had a better
understanding of the hints provided than participants who
received only next-step hints (control group) [16]. However,
we did not find a difference in performance between the
experimental and control groups [16]. In another laboratory
study we found that participants who had access to next-step
hints with textual explanations, performed significantly better
(i.e. achieved higher scores) than those who did not receive
hints at all in programming tasks with hints available, but we
did not find a difference in their learning [11].

C. Self-Explanation Prompt Design

The second design feature added to next-step hints is a self-
explanation (SE) prompt, which is displayed after a student
receives a hint, asking the student to reflect on why iSnap
gave them that hint. Figure 1 D shows an example of a SE
prompt. This feature addresses our second design goal, which
is to allow students to “make sense” of the hint, which is an
active learning approach that can improve students’ learning
from next-step hints as stated in the KLI framework [17].
This design feature is also adapted from previous work, which
shows that prompting students to self-explain after viewing
worked examples can improve their learning [46], [44]. As
suggested by Aleven et al. [18], we apply this principle to

our “bottom-out” next-step hints, which when combined with
textual explanations, may act as micro-scale worked examples
that can positively impact students’ performance and learning.
We designed the prompts to randomly show one of a variety of
messages, such as “Why do you think iSnap recommended this
hint?” and “What is this hint trying to help you to understand
or do?” that encourages the student to think critically about the
hint itself and its relation to their code. These self-explanation
prompts are open-ended, and students can write anything in
the response field, but they are forced to write at least 15
characters. While this may sound frustrating, it is an essential
design feature to make students stop and self-explain, or
otherwise they will simply ignore it [22]. In prior work, we
found that most students normally answer the prompts [16].

In domains other than programming, several studies show
that self-explanations can improve students’ learning [47],
[48]. In programming, Vihavainen et al. found that stu-
dents who received self-explanations with supporting multiple-
choice questions performed better on a programming exam
[49]. In our prior work, in a laboratory study, we found that
adding self-explanation to next-step hints improved partici-
pants’ performance (i.e. scores) in programming tasks with
hints, and improved their learning in isomorphic tasks without
hints [11].

D. Adaptive Hint Display

Our third design choice focused on how the hints are pre-
sented and made available to students, what we call the adap-
tive hint display. Traditionally, hint systems have provided on-
demand hints, where the student is required to recognize their
need for help and request it. Other systems have provided
proactive hints, which may interrupt students to suggest help
when the system deems it necessary. iSnap balances these
two approaches, prompting students, but in an unobtrusive
way, and only when needed. This feature addresses our third
design goal, which is to provide students with hints only



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 6

when they need it, as drawn by the contingent tutoring theory
[32]. Additionally, this design choice serves as a guidance to
encourage students to productively seek help, and to limit hint
abuse (i.e. when students are not in need of help) and hints
avoidance [50]. This is an important design choice because
prior work shows that unproductive help-seeking behavior
correlates with a decrease in student learning [18].

Our adaptive hint display is implemented using an adapted
version of the data-driven SourceCheck algorithm, which
works as follows. We developed a feature in iSnap that keeps
track of students’ progress by comparing the current student’s
code with prior correct solutions. If the distance between both
ASTs is decreasing (i.e. the student solution is getting closer
to the correct solution), the system will identify the student as
being in a “progressing” state; otherwise, it identifies them as
being in a “struggling” state. Every two minutes, iSnap checks
the student state, and if the student is detected to be struggling,
it pops up a hint button (as shown in Figure 1 A), which blinks
for three seconds to draw their attention. The student can
choose to click on it if they need help, or ignore it if they do
not wish to be interrupted. If the student does not click on the
hint, iSnap continues to accumulate hints every two minutes
as long as the student continues to struggle, and the student
can open these hints at any time they wish. These hints are
proactively displayed based on the student’s struggling state,
and they are opened on-demand to give students the control
on whether to see the hint or not; combining both benefits of
proactive and on-demand hint displays.

In our prior work, we implemented a similar version of
adaptive hint display, but it estimates student progress dif-
ferently [22]. We found that students using adaptive hint
display were less than half as likely to engage in unproductive
help-seeking strategies (such as help abuse) than students
using traditional on-demand hint display. We also found some
inconclusive evidence suggesting that providing students with
hints, only when they need it, may improve their learning in
a future task without hints [22], though uncertainty in these
results suggests the need for further evaluation.

IV. METHODS

The prior work presented in the previous section shows
that each of our design features for iSnap have improved it,
and they have hopefully addressed some of the limitations in
prior hint systems (including earlier versions of iSnap), which
prevented them from showing impact on students’ outcomes
[9], [25], [22]. However, our prior evaluations have been
limited to single-day, laboratory studies [11]. To understand
how robust our prior findings on data-driven enhanced next-
step hints are, and whether they generalize to a different
population and learning context, below we present our second
contribution: an empirical evaluation of the iSnap system over
4 weeks of a university-level introductory computing course
for non-majors. This evaluation leverages multiple assessment
mechanisms to evaluate the system’s impact on students’
outcomes. In this study, we seek to answer the following
research questions: RQ: In a classroom setting, what is the
impact of enhanced next-step hints on students’ (RQ1:) pro-
gramming performance and (RQ2:) learning?; RQ3:) how do

students perceive these hints?; and (RQ4:) how does problem
difficulty and hint quality mediate the effect of enhanced next-
step hints on students’ outcomes? This study is a conceptual
replication [51], in which the procedures are different (in this
case different population, duration, context, tasks, etc.), but
includes similar research questions (i.e., what is the impact of
hints on students’ performance and learning).

A. Population

We conducted this study in a CS0 classroom in a public
US university, in Fall 2020, which includes 74 undergraduate
students, 62 of whom consented to our IRB-approved study.
Participants of this course are undergraduate students who
were novices with minimal programming experience, since
they are required to have not taken any prior undergraduate or
Advanced Placement (AP) programming course. In this class,
28.8% identified themselves as women, 69.5% as Men, and
0.01% as others. 69.5% identified themselves as White, 13.5%
as Asians, 6.7% as Black/African American, 5% as Indians,
and 3.4% as Native Americans. 61% of these students are less
than 21 years old, 32.3% are between 21 and 24 years old,
and 6.7% are older.

B. Programming Environment

During the first 4 weeks, students learn block-based pro-
gramming using the iSnap programming environment, in
which they do their classroom and homework exercises. Due
to COVID-19, classrooms were held online via Zoom. We
discuss implications of the online setting in Section VII.
For both classroom and homework exercises, iSnap provided
some students with the enhanced next-step hints (depending
on their condition, discussed below). As a part of the class
requirements, all students (regardless of condition) engaged
in pair programming during in-class assignments, where each
pair of students worked together on the same assignment
attempt, using a pair programming feature designed for iSnap.
Using this feature, the instructor asked students to swap roles
after every major step, to ensure that students were maintaining
an appropriate pair programming practice. In Section IV-D3
we fully discuss the pair programming feature, challenges, and
how we dealt with it during data collection and data analysis.

C. Procedure

We employed a controlled study for 4 weeks, allowing
for between-subjects comparisons 1. Table I shows the study
procedure. In the first week of the CS0 class, one of the authors
introduced the study to all students and offered them the oppor-
tunity to consent to participate in the research. When students
first logged in the programming environment, iSnap randomly
assigned students to one of the two conditions: the Hints
condition where iSnap provided students with enhanced next-
step hints, if needed, and the Control condition where iSnap

1For the remaining weeks we flipped conditions to ensure that all students
receive hints at some point; however, we did not include analysis of this data
since hints were not designed to be effective for more advanced programming
tasks in Week 5-7.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 7

TABLE (I) Study procedure.
Week no. Hints group (n = 30) Control group (n = 32)

1 Consent form + Pre-survey (n = 62)
Polygon Maker (in class) Polygon Maker (in class)

2
Squiral (in-class) Squiral (in-class)
Guessing Game

(in class)
Guessing Game

(in class)
Daisy (HW1) Daisy (HW1)

3 Frogger (in-class) Frogger (in-class)
BrickWall (HW2 - no hints)

4 Post-survey and post-test

provided no hints. As shown in Table I, 32 students were
assigned to the Control condition, and 30 students were
assigned to the Hints condition. Afterwards, to accommodate
pair programming, students were randomly paired according
to whether they had consented or not, and their condition,
such that: for students who consented, we paired students
together with similar conditions, and similarly for those who
did not consent. However, if for any reason two students
with different conditions were paired together, we chose to
give them access to the Hint condition, and we discuss the
potential implications of this in Section VII.

Figure 2 shows a solution example for each programming
assignment with its corresponding expected output. In week 1
students had their first in-class programming assignment called
Polygon Maker, which asks students to create a procedure
with 3 parameters: ‘n’, ‘len’, ‘thick’, to draw a polygon with
‘n’ sides, each with length ‘len’, and thickness ‘thick’. In
week 2, students had three programming assignments: Squiral
(in-class), Guessing Game (in-class), and Daisy (homework).
Squiral asks students to create a procedure that takes user
input for ‘r’ and draws a spiral-shape square with ‘r’ rotations.
Guessing Game asks students to create an interactive game
where the player tries to guess a randomly selected secret
number by the computer. The game repetitively asks the player
to guess the secret number until correct, and after each guess
it tells the player if their guess was too high or too low,
or congratulate them if the guess was correct. Daisy asks
students to create a procedure that draws a daisy-shape with a
user-specified number ‘n’ of overlapping circular petals with
alternate colors.

In week 3, students had two programming assignments,
Frogger (in-class), and BrickWall (homework). Frogger is an
interactive game with several running Sprites: frogs, cars,
lakes, and lily pads on the screen, where the player is required
to get 1 frog on each lily pad without running into a car
or sinking in the lake. For technical issues, the log data
for Frogger was not retrieved correctly, and therefore, we
excluded its analysis from this work. BrickWall asked students
to draw a wall of bricks, with alternate rows of bricks using
nested procedures, variables, conditions, and loops. At the end
of week 4, the instructor gave students a post-test in the form
of a multiple-choice quiz, adapted from [52] and described
in Section IV-D2, followed by a post-survey to collect their
perceptions about the usefulness of the hint features, and how
they could be improved.

Fig. (2) One sample solution for each programming task (on
the left), and their corresponding output (on the right).

D. Analysis & Measures

In this study, we collected two sources of data: log data and
surveys. This data was used to measure the following:

1) Performance: We used two measures of performance:
students’ scores on programming assignments, and time spent
on these assignments.

Assignments’ scores: To calculate students’ scores on
programming assignments, we used the existing teaching
assistants’ rubrics, such that each rubric item corresponds
to an objective of a correct solution, where a successful
completion to all objectives of a given exercise is equivalent
to completing that exercise. Because teaching assistants (TAs)
split grading students’ submissions and deduct points due
to late submissions leading to inaccurate scores, we graded



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 8

students’ submissions, blind to condition, for all programming
tasks, where a student score is the total number of completed
objectives.

Analytical Approach: To analyze whether the enhanced
next-step hints had an impact on improving students’ scores in
the in-class assignments, we used linear mixed effects (LME)
models which “... are an extension of simple linear models
to allow both fixed and random effects, and are particularly
used when there is non-independence in the data, such as
arises from a hierarchical structure” [53]. Using LMEs is
appropriate for this data due its repeated measures design in
which observations (i.e. student scores in each programming
task) were nested within students, since each student attempted
more than one in-class programming assignment. Across both
conditions on the in-class assignments, the mean of students’
scores was 88.4% (min = 0% ; SD = 20.83%; max = 100%).
For further analysis of students’ scores in any individual
programming assignment, we used a Mann-Whitney U test to
measure the statistical significance of differences between both
conditions. A Mann-Whitney U test is appropriate in this case
because this data does not satisfy the assumption of normality.
To provide more insights of the results, we report statistical
tests along with effect sizes. We computed effect size estimates
for Mann–Whitney U nonparametric test using the ‘r’ statistic
described in [54] because our data was non-normal, where a
large effect is >= 0.5, a medium effect is 0.3, and a small
effect is 0.1. However, these results should be considered with
caution since the sample size for each condition is ∼ 30.

Time on assignment: To measure the effect of enhanced
next-step hints on the time students spent on a given program-
ming assignment, we use students’ log data to calculate the
active time students take until they submit that assignment.
Student active time is the total time from when they began
to program to the time when they submitted their code. If a
student were idle (i.e. making no code edits) for more than
5 minutes, we consider this as idle time and subtract it from
their active time.

Analytical Approach: Similar to the analysis on students’
scores, we used linear mixed effects (LME) model to predict
the effect of the enhanced next-step hints on students’ overall
active time taken to complete the in-class assignments. Across
both conditions in the in-class assignments, the average student
active time (in minutes) was 20 (min = 2; SD = 14.52;
max = 81). In addition, for any individual task, we used a
Mann-Whitney U test to measure the statistical significance
of differences in the active time across conditions.

2) Learning: We measured students’ learning in two ways.
First, we compared students’ performance in the BrickWall
homework assignment, where both conditions have no access
to hints. The BrickWall task acts as an appropriate measure of
assessment since it shares similar programming concepts with
the previous programming assignments (e.g. loops, custom
blocks, and variables), and therefore, one would expect that
if students learned well during the previous programming
assignments they can perform well on this one. Our second
measure of learning is by comparing students’ scores in a
post-test which consists of 14 multiple-choice questions, where
each question is graded as 1 if it is correct, and 0 otherwise.

The maximum score in the post-test is 14/14, i.e. 100%. The
post-test questions consisted of Snap code tracing and fill-in-
the-blank code completion questions2, which directly aligned
with the learning objectives of the in-class and homework
assignments focusing on variables loops, conditionals and
procedures.

Analytical Approach: For each of our learning measures
(i.e. the assessment task, and the post-test), we used a Mann-
Whitney U test to measure the statistical significance of
differences between students’ non-normal scores across the
Control and the Hints groups. Across both conditions, the
mean performance in BrickWall is 95.83% (min = 50%; SD =
11.91%; max = 100%), and the mean score in the post-test is
87.23 (min = 61.54; SD = 11.13; max = 100).

3) Pair Programming Analysis: As a reminder, recall that
pair programming was part of the classroom instruction. The
instructor of the CS0 classroom developed a feature in the
iSnap block-based programming environment that enabled
pair-programming during in-class assignments, even during an
online class. When two students work together, one of them
acts as the “driver” and the other as the “navigator”. Students
can switch roles by pressing the “swap roles” button (shown in
Figure 1 E) in the programming environment. Clicking on this
button will save the current code of the “driver”, and load it on
the “navigator’s” screen. The iSnap logging feature, that logs
all student actions (i.e. code edits) during programming [15],
is modified to also log time instances when students switch
roles.

When analyzing students’ log data while they were pair
programming, we found three primary pair behaviors: First,
some students worked separately on two different iSnap
projects, submitting two different projects at the end. Second,
some students worked together throughout the programming
assignment, submitting the same project at the end. Third,
some students worked in pairs for some time but then finished
separately, submitting two different projects at different end
times, with some shared code and log data (e.g. students
have the same first 60 edits, but one has an additional 30
edits, and the other has a different additional 10 edits)). This
variance was expected, and occurred, for example, because
some pairs finished their assignment in-class, while others
had to finish it (separately) for homework. Because of these
discrepancies, when analyzing students’ log data, we treated
each student as a separate instance, where each student had a
final submitted attempt, which we used to calculate students’
performance, and this attempt has a single code trace (logged
by iSnap), which we used to measure time on task. Students
who worked in pairs all the time, their submissions and
traces were identical. For students who worked only part
of the time together, their submissions were different, and
their traces overlapped for some period of time. For those
latter students, we calculated their active time in a given
programming assignment by combining the time they worked
together, in addition to the time they worked separately.

4) Students’ Perceptions: Using collected post surveys, we
performed quantitative analysis to evaluate students’ ratings

2You can view post-test questions here: www.go.ncsu.edu/posttestfall20



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 9

in Likert-scale questions about the usefulness of iSnap’s en-
hanced next-step hints, and which design feature they prefer.
For open-ended questions, we reviewed all students’ responses
to gain qualitative insights about students’ perspectives on
hints during an authentic classroom experience. We identified
positive and negative themes, as in thematic analysis [55],
that indicated reasons why enhanced next step hints, or why
specific design features (e.g. SE prompts), were helpful or
unhelpful, respectively.

5) Hints Usage: To understand how hints may have im-
pacted performance and learning, it is important to analyze
how students used hints in the first place. To do so, we
measured hint usage, as a measure of hint quality, in three
ways: (1) how many hints students have opened in each
programming assignment; (2) of these hints, how many were
followed, i.e. whether students applied the hint’s suggestion
within a maximum of 10 code edits3; and (3) how students
answered SE prompts. To grade students’ answers to open-
ended SE prompts, we used a simplified rubric compared to
prior work [16], [56]. In particular, we graded SEs responses as
either informative or uninformative. Informative SE prompt
answer is when a student gave an informative detailed answer
(such as: “The hint is showing me an easy way to get
the proper degree change without any simple mathematical
error”), or a simple answer without details (such as: “It helps
pick the correct blocks to use.”). Uninformative SE prompt
answer is when the student’s answer was nonsense (such as:
“dfzdfgdzfg”) or unmeaningful (such as “Okk”).

V. RESULTS

We present the results in the order of the research questions.
We analyzed in-class assignments together, since we are inter-
ested in the overall effect of hints on performance, time and
learning, as discussed in Section IV-D on the in-class assign-
ments: PolygonMaker, Squiral, Guessing Game. We chose to
analyze the Daisy homework assignment separately since this
was a homework task and it lacks two factors of support: pair
programming, and TA help during the in-class programming
tasks, which may have mediated the effectiveness of hints.
Table II shows descriptive statistics of students’ performance
and time in all the programming assignments.

Statistical Comparisons: We investigate our RQs through
two statistical models and five statistical tests below, using an
alpha value of 0.05. As suggested by [57], [58], [59], we have
not adjusted the alpha value to control the experiment-wise
error rate, but instead justify for each test “what was done
and why, and we discuss the possible interpretations of each
result,” allowing the reader to weigh the evidence in light of
this information. We scope our claims accordingly.

A. RQ1- Performance

Recall that we measured students’ performance by calculat-
ing students’ scores on the programming assignment and their
active time spent on these assignments.

3We used a threshold of 10 edits after inspecting hundreds of students’ data
on how they used hints, since sometimes students need to apply several edits
(i.e. deleting, or snapping blocks) before they apply a hint.

TABLE (II) The mean/medians of students’ performance
scores (in %) and active time (in minutes) for each program-
ming task across the Hints and Control group. The bold
numbers indicate which group has a higher value (not the
statistical significance).

Students’ scores Active time
Hints Control Hints Control

Polygon
Maker 92 / 100 76.85 / 100 10.1 / 10.17 11.1 / 10

Squiral 92.2 / 100 84.26 / 100 27.8 / 24.9 21.9 / 16
Guessing

Game 91.9 / 100 93.6 / 100 23.67 / 19 24.2 / 23

Daisy 90.4 / 100 86.5 / 100 42.65 / 28.5 62.1 / 44
BrickWall 97.8 / 100 94 / 100 57.87 / 57 61 / 54

Assignment scores: To evaluate the impact of hints on stu-
dents’ scores for the 3 in-class assignments, we used a linear
mixed-effects model (Model A), with score as the dependent
variable, condition and task as independent variables (fixed
effects), and student as a random effect. As shown in Table III,
condition takes on a value of ‘1’ for the Hints group and
‘0’ for the Control group. ‘Task’ represents the categorical
order of the programming tasks as 2 dummy variables (also
known as indicator variables) to represent distinct categories
[60], where ‘0, 1’ used to represent PolygonMaker, ’1, 0’
represents Squiral, and ‘0, 0’ represents Guessing Game. The
model has a total of 160 observations which is the total
number of students’ submissions in the three tasks. As shown
in Table III, Model A shows that only being in the Hint
condition significantly improves students’ scores (p = 0.04),
such that students who had access to hints performed on
average ∼7.76% points higher than that of the Control
students across all the 3 in-class programming tasks.

For the Daisy homework task we found that students in
the Hints condition have higher scores (M = 90.38; Med =
100; SD = 18.81) than students in the Control group (M =
86.5; Med = 100; SD = 22.62). However, a Mann-Whitney U
test showed that this difference was not significant (p = 0.64;
Effect size r = 0.1), possibly due to a ceiling effect4.

Time on Task: To measure the time students spent on solv-
ing in-class programming assignments, we combined students’
active time (as discussed in Section IV-D1) on the in-class
assignments: PolygonMaker, Squiral, Guessing Game. Similar
to Model A, we used a linear mixed-effects model controlling
for condition and task type (i.e. the independent variables) in
Model B to predict students’ active time (i.e. the dependent
variable). As shown in Model B in Table III, having access to
hints (i.e. Hint condition) does not impact the time spent on
in-class programming tasks (p = 0.52). However, we do see a
significant effect of Task on time, meaning some assignments
took longer to complete than others, but this is to be expected,
as discussed in Section VI-B.

For the Daisy homework task we found that students in
the Hints condition spent less time (M = 42.65; Med =
28.5; SD = 45.9) than that spent by students in the Control

4A ceiling effect happens when a large percentage of observations score
near the “upper” limit on a test or an assignment (in our case the upper limit
was 100%). This ceiling effect makes it difficult to compare the difference
between the means of the control and Hint group.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 10

TABLE (III) Estimated coefficients (Standard Error) of linear
mixed-effects (LME) models predicting students’ scores on
programming assignments (Model A), and students’ active
time spent on programming tasks (Model B), respectively.

Model A Model B
Coeff (SE) p-value Coeff (SE) p-value

Intercept 83.64 (2.66) <0.001 19.94 (1.77) <0.001
Condition 7.76 (3.8) 0.043 1.61 (2.5) 0.52
Polygon 6.35 (3.34) 0.06 -6.22 (2.14) <0.01
Squiral -0.45 (3.24) 0.88 9.87 (2.21) <0.001

Observations 160

group (M = 62.11; Med = 44; SD = 46.22), and a Mann-
Whitney U test showed that this difference is significant
(p = 0.01; Effect size r = -0.31). As a post-hoc analysis,
we measured students’ programming efficiency to investigate
whether this decrease in time affected students’ performance
on the programming homework. We measured programming
efficiency by calculating: students’ performance score (in %)
/ active time spent (in minutes). We found that the Hints
group programming efficiency is higher (M = 4.28; Med =
3.35; SD = 3.66) than that of the Control group (M = 2.11;
Med = 1.92; SD = 1.45), and a Man-Whitney U test shows that
this difference is significant (p = 0.01) with a medium effect
size (Effect size r = 0.33). This suggests that students with
hints achieved correct rubric items at over twice the efficiency
of students without hints, on average. Together, these results
show that hints improved students’ programming efficiency in
a homework task, where no pair programming took place and
with less help from the instructors and peers.

B. RQ2 - Learning:

We first investigated learning by comparing students’ per-
formance on HW2 BrickWall where all students did not have
access to hints. We found that students in the Hints group
have higher scores (M = 97.83%; Med = 100%; SD = 7.20%)
than students in the Control group (M = 94%; Med = 100%
; SD = 14.93%). A Mann-Whitney U Test does not show a
significant difference (p = 0.42; Effect size r = 0.12), possibly
due to a ceiling effect (the median score was 100%). In terms
of active time, we found that the Hints group completed the
Brick Wall task faster (M = 57.87 ; Med = 57 ; SD = 37.24)
than the Control group (M = 61 ; Med = 54; SD = 29.74).
While these results are inconclusive, it suggests that having
hints in earlier tasks may improve programming efficiency in
later tasks without hints.

We then compared students’ scores in the post-test (i.e. Quiz
1), where a total of 53 students took the post-test; 26 in the
Hints group, and 27 in the Control group. We found
little difference between the Hints group (M = 86.69%;
Med = 88.46%; SD = 12.32%) and the Control group
(M = 87.75%; Med = 92.31%; SD = 10.07%), and a Man-
Whitney U test shows that this difference is not significant (p
= 1; Effect size r = 0.001). A review of individual post-test
problems shows that this result was generally consistent across
problems. While this result does not show that hints improve
students’ learning in a post-test, it does show that hints were

not harmful for learning even if it provides students with a
small part of the correct solution.

C. RQ3 - Students’ Perceptions

These results are focused on students in the Hints group
who took the optional post-survey to present how students
perceived hints. In total, 46 students took the survey and 3
of them mentioned they have never clicked on a hint button,
leaving a total of 43 responses.

First, when students were asked which hint feature was most
useful, we found that the majority of students (21, 48.8%)
preferred having next step hints with textual explanations,
17 students (39.5%) preferred having only next-step hints,
3 students (7%) preferred having next-step hints with SE
prompts, 2 students (4.6%) preferred having both textual
explanations and SE prompts with next-step hints, and one
student (2%) preferred having only textual explanations with
SE prompts. This aligns with our prior work that shows that
students prefered next-step hints with textual explanations
[16], [11], even if they do not read the hint explanations, and
that prompting students to self-explain is not prefered by most
students [11]. Second, when students were asked to rate (on a
scale from 1 to 5) the overall usefulness of hints, we found that
77% rated 3 or above. This shows that overall students in the
Hints group found that hints were helpful. Below we report
themes on why students’ perceived hints as helpful or not, and
why they preferred specific design choices. We present quotes
from students’ responses by adding an anonymous student ID
preceding their quote (e.g. [S1] means student 1).

For enhanced next-step hints, all students’ reported that the
enhanced next-step hints were overall helpful. Students noted
that hints “guide me [the student] to the correct code, which
helped me to get along with my labs [S30].”, and even more
“hints were the most helpful when dealing with new concepts
that we [students] didn’t learn in class [S5].” This aligns
well with the quantitative finding that the enhanced next-step
hints improved students’ overall performance during in-class
assignments. In addition, one student noted that the hints were
useful only at the early tasks, but not in complex tasks: “after
the first month or so they stopped being useful entirely, as
the hints they gave were either too simple or not relevant to
whatever more complex code we were learning [S8].” This
might reflect the lower performance we found in the Guessing
Game task (shown in Table II, which was mainly due to the
lower hint quality as we will discuss in the next Section.

Some other students reported why specific design choices
were helpful or not. For only next-step hints, students noted
they were helpful because they are visual learners: “if I see
how something should be then I will remember that next
time I encounter a similar problem [S33]”, and that they are
also easy to understand and fix errors: “The pictures are the
quickest way of gathering how a new block works [S17]”,
and they “definitely helped me quickly fix my mistakes [S20].”
However, no student criticized the next-step hints by itself.

For next-step hints with textual explanations, most students
noted that they are “the easiest to understand because they
tell you what to do word for word [S30]”, and that they



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 11

TABLE (IV) A summary of students’ hints usage and self-
explanation prompts.

Task

Number
of
students
who
received
Hints

Students
who
opened
at least
one hint

Total
hints
opened

Number
of hints
followed

Number
of
Informative
SE
answers

Polygon
Maker 24/25 45.83% 26 88.46% 69.23%

Squiral 28/29 51.7% 82 78.1% 96.34%
Guessing
Game 26/27 42.3% 62 45.16% 98.38%

Daisy 21/26 47.6% 71 77.46% 87.32%

were specifically helpful because: “they exactly told us how to
improve our code when we were stuck on how to exactly use a
certain block and what to use it for [S25]”, which reveals the
importance of our textual explanation design [16]. However,
one student noted that the textual explanations needed to be
more detailed: “If they were more detailed and explanatory,
they would definitely be helpful [S39].”

Similar to prior work, we found conflicting findings about
the usefulness of self-explanation prompts. On one hand,
students liked SE prompts because “the question improves
my understanding and expression [S7].”, which is the key
intended outcome of the SE prompts. On the other hand,
other students do not prefer SE prompts because they did
not understand the hint in the first place “The [SE prompt]
isn’t helpful, because often the part that compares code is
confusing [S11]”, or because “the question at the end that
was required to be answered got annoying. This is especially
true when I needed to look at the same hint multiple times, and
had to fill this section out every time [S3].” We note that the
negative themes about SE prompts are somewhat different than
prior work because students noted design issues (as noted by
S3 response), which we can fix in next deployments, or due
to hint quality (as noted by S11). We argue that this opens
new directions for improving the design of SE prompts, that
can further reinforce their impact on students’ outcomes in
programming.

D. RQ4 - Effect of Problem Difficulty & Hint Quality

Problem difficulty: As shown in Model A in Table III, we
found no main effect of any of the programming assignments
(p > 0.05) on students’ scores, suggesting that overall the
assignments were similarly difficult . To investigate whether
the effectiveness of hints was mediated by the assignment
itself, we investigated students’ scores on each task separately.
As shown in Table II, we found that the Hint group has
higher scores than the Control group in all assignments
except Guessing Game, but that the magnitudes vary (e.g. 15
points higher on Polygon Maker, but only 3 on BrickWall).
This suggests that hints may have been more useful on some
assignments than others, and may not be similarly effective on
every assignment. We discuss why hints may not have helped
on the Guessing Game task below.

Hint quality: Recall that our current version of iSnap
programming environment provides students with hints using

a data-driven algorithm that calculates whether a student is
struggling or not, as described in Section III-D. As a result,
if a student is marked as struggling, the system will pop-up a
hint button, and it is up to the student if they want to open the
hint. Therefore, not all students in the hints group can receive
hints, particularly if they are progressing, and the number of
hints received by each student varies based on their progress.
As a result, we investigated hint quality through students’ hint
usage.

To investigate students’ hint usage, we first looked at the
number of hints opened by students in the Hints condition.
As shown in Table IV, the majority of students received at
least one hint button in all assignments; and, 42.3% - 51.7%
of these hints were opened. Compared to previous versions of
iSnap, this range of hint usage is higher than what we found
in previously published [16], [22] and unpublished studies.
While this result indicates a low probability of hint abuse, it
may also indicate students’ preference of being independent
and not to overly use hints [5]. To investigate if the opened
hints were useful and interpretable to students (i.e. a second
measure of hint quality), we measured the hints’ follow rate
(as explained in Section IV-D5). As shown in Table IV, in
three programming tasks: PolygonMaker, Squiral, and Daisy,
the hint follow rate ranges between 77.46% - 88.46%. These
results suggest that next-step hints with both textual explana-
tions and SE prompts make hints interpretable and convincing
to be followed. However, looking in the Guessing Game task,
we found only 45.16% of hints were followed.

Digging further into Guessing Game hints, we found three
reasons for this low hint follow rate. First, as shown in
Figure 2, the Guessing Game correct solution has multiple
redundant blocks to be used, like “ask block” or “say block”.
As a result, often when hints suggest one of these code
blocks that are already used in students’ code, students may
not understand why they need to use them more than once.
Second, there are multiple ways to solve the Guessing Game
task, and the hints were not always matching these multiple
strategies. For example, sometimes students use “answer”
block directly in the code (which is a block used to save
user input to a question). However, a student may receive
a hint that suggests assigning the “answer” block value into
another variable, and then use that variable instead. Both
strategies are correct; however, most students ignore this hint
in that case. While that shows that hints were unfollowed,
it also shows that students think about the hint, and reflect
on it, which was clear in students’ self-explanation prompts’
answers, such as on student self-explained a hint saying: “I
don’t think this is necessary because my code works!”. Third,
some students attempted to break the Guessing Game task
into several subparts, and then combine them at the end (often
called a prototyping behavior – a common tinkering behavior
in programming [61]). As a result, sometimes they get hints
on a subpart that they are not working on at that moment,
so they ignore the hint. For example, one student said: “I did
not reach this part yet”. These three reasons indicate design
issues in the data-driven hint generation system, not only in
the iSnap system, but it can also occur in other programming
tutors, which require future improvements to their underlying



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 12

TABLE (V) Examples of self-explanation prompts and stu-
dents’ answers to these prompts.

Task SE prompt Student informative
answer

Polygon
Maker

Why do you think Snap
recommended this hint?

I need to tell what thickness
the pen needs to be

Squiral Why do you think Snap
recommended this hint?

I have been struggling with
the correct blocks to use

Guessing
Game

How does this hint help
you think about how to
solve the problem?

This did not help, an error
still occurs when I use this

Daisy Why do you think Snap
recommended this hint?

The block is not present
in my code!

Daisy
What is this hint trying
to help you to understand
or do?

Have the number or petals
adjust so the conditional
function detects the shift

algorithms. Unlike the Guessing Game assignment, when
we investigated the hints opened by students in the other
assignments (that have a high hint follow rate), we found
most of these hints (>75%) are relevant to students’ code,
and captured correct missing code blocks. This indicates that
the hint usage is very relevant to the programming task it is
generated for.

Our last measure in hint usage is investigating students’ an-
swers to the self-explanation prompts, as a way to understand
how such SEs might have impacted students’ understanding
of the hints. As explained in Section IV-D5, we calculated
how many SE answers were informative versus uninformative.
Table IV shows that 69.23% - 98.38% of students’ answers
were informative, indicating students’ consideration to such
prompts; whether by providing a detailed informative answer
or a simple one. This is a possible factor of why hints
positively impacted students’ performance, and sometimes
learning, in this and prior work [11], [17]. Table V shows
an example of SE prompts, and some of students’ informative
and informative answers.

VI. DISCUSSION

A. RQ1-RQ3

In classroom settings, what is the impact of the enhanced
next-step hints on students’ (RQ1) performance, (RQ2) learn-
ing and (RQ3) how do students perceive these hints? For
performance, we found that students in the Hints group
completed on average 7.4% more of in-class programming
assignments than those in the Control group. These results
align with our prior work [11], and suggest that hints ac-
complish their primary purpose of helping students progress
[18]. Even though hints required students to take time to read
and answer the SE prompts, we found that the Hints group
achieved higher scores and submitted their code faster on the
Daisy homework. Taking these results together - higher scores
on in-class assignments, and faster completion on HWs, we
might summarize this by saying that the enhanced next-step
hints led to an increase in students’ programming efficiency.

Looking into performance in terms of students’ active time
spent on the programming tasks, we found a consistent trend,
where the Hints group finished faster than the Control
group in all tasks except in Squiral, as shown in Table II.
Digging further into student log data and hint usage in Squiral,

we found no clear reason why the Hints group spent more
time in Squiral. This suggests that there might be other factors,
unobservable in log data, that affect student programming
time during the classroom. This is one of the challenges of
running real-world classroom experiments: there are many
classroom factors beyond control, such as the effectiveness
of pair-programming groups, the distribution of instructor/TA
help, etc., which cannot be observed in log data.

It is important to note that the enhanced next-step hints were
accompanied with textual explanations and SE prompts and
were provided in an adaptive hint display. Our results suggest
that these design features are effective for creating impactful
next-step hints, and our prior work [11] suggests that they may
even be necessary to see longer-term impact. At the end of
this section, we provide a more detailed discussion about the
consistency of our findings across studies. From a theoretical
perspective, we explain how such design features improved
the impact of hints: First, textual explanations of the next-step
hints incorporate declarative knowledge into the hint, which
helps the student to apply and learn from it, according to the
ACT-R cognitive theory [28]. Second, prompting students to
self-explain hints might have encouraged them to stop and
think to make sense of the hint, rather than quickly skimming
it. This process of “sense making” of hints is essential for
learning, as suggested by the KLI framework [17]. This can
encourage students to follow the hint, and therefore, bring
their code closer to the correct solution. Third, proactively
providing hints when a student struggles might trigger them to
read the hint; since this is when they might be looking for help;
and therefore, improve the effectiveness of hints [32], [62].
This supports Wood’s theory of contingent tutoring, which
emphasized that the tutor’s help should be contingent upon
the learner’s needs to improve their learning [32].

For learning, we found the Hints group performed better
on BrickWall (i.e. the assessment task), and similarly in the
post-test, with insignificant differences, suggesting inconclu-
sive findings about whether hints improved learning. We
suggest two possible reasons for this result. First, students
did uniformly well on the assessment task (median grade
100%, 87.5% of students fully completed the task), perhaps
because it came after 3 weeks of programming practice,
which might be enough time for all students to succeed on
this assignment, leading to a ceiling effect. Second, it might
be that the low hints usage (as suggested by their varying
quality) in the Guessing Game assignment affected students’
help-seeking behavior that resulted in less learning outcomes.
This interpretation is validated by a number of studies, in
different domains, that found positive correlations between
students’ use of help and their learning outcomes [32], [30],
[18]. Regardless, it seems clear that hints did not impede
learning, since prior work shows that hints, which give away
part of the answer, can reduce student learning, for example
if help abuse occurs [18], [30]. Since having hints helped
students get unstuck, and complete work better and quicker,
while learning at least as much as the Control group (for
a future task and post-tests), this suggests that hints are still
overall quite helpful to students and should be incorporated
into introductory computing courses where possible.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 13

For students’ perceptions, overall, we found that students
appreciate having hints with textual explanations, more than
having hints with self-explanation prompts. This aligns with
prior work suggesting that novices may have difficulty with
open-ended self-explanation prompts (e.g. being confusing,
disturbing), since they may lack the domain knowledge to
construct meaningful explanations [63], or because they do not
like doing the extra work [11]. While one can argue that hints
with SE prompts can not be helpful if students do not prefer
to answer the prompts, we argue that students’ preferences
do not always reflect what is best for learning. For example,
Shih et al. found that students who spontaneously self-explain
bottom-out hints come away with better learning results [64].

Last but not least, in terms of performance, time, and
students’ perceptions, the current study results are consistent
with (i.e. replicated) our prior findings with a population of
recruited participants during an online one-hour study in a
laboratory setting [11]. However, we did not find a similar
learning effect to what we found in our prior study. This can
be due to the first reason discussed above – one-hour study can
show an immediate effect on learning, versus 4-weeks study
that might have faded this effect. Overall, this suggests that the
effect of enhanced next-step hints is somewhat robust across
multiple populations and learning contexts.

B. RQ4

How do problem difficulty and hint quality mediate the
effect of enhanced next-step hints on students’ performance? In
terms of the effect of problem type (or difficulty), overall, we
found that the hints improved overall student performance on
in-class and homework programming tasks; as shown in Model
A in Table III. This suggests that the programming assignment
complexity does not mediate the impact of hints, since we
found that having hints improved students’ performance in
several tasks with varying complexity. However, all of these
tasks were still relatively straightforward CS0 assignments,
which could be accomplished in a couple of hours at most,
and so our results do not speak to the impact of hints in more
advanced programming courses.

In terms of the impact of hints’ quality, we found that
hints provided in Guessing Game programming task were not
of high quality, compared to the other tasks, as discussed
in Section V-D, which might have led to a decrease in the
benefit of hints to students’ performance. This shows that
the usefulness of hints can be mediated by their quality (as
revealed by students’ hint usage – opening and following
hints). This agrees with prior work which suggests that “high-
quality initial hints can encourage students to make more use
of hints in the future [13].” The variance in hint quality can
arise due to many factors, such as the quality of data used to
generate the hint, or the type of the programming task (i.e. has
multiple possible solutions, or just a few ones), or the textual
explanation used to describe the hint.

C. Design Implications

Our results have some implications for how future edu-
cational technologies should be designed to support novice

programmers. Each of the design choices discussed in Sec-
tions III-B, III-C, and III-D could likely contribute to the
hints’ helpfulness, which we have also found in our prior work
[11], [22], [16]. It might therefore be worth applying such
design features to other, somewhat similar, automated support
(such as worked examples, compiler messages, or autograder
test cases) to enhance their impact on students’ performance
and learning in programming labs and homework tasks. For
example, autograder test cases could be enhanced by adding
self-explanation prompts that can improve students’ learning
from the test cases. Additionally, compiler errors could be
enhanced by adding textual explanations (as in enhanced
compiler error messages [65], [66]). Furthermore, the use of
adaptive hint display has shown promising impact in this work
as well as in our prior work [22], which can be applied in
other classrooms whether automated help is available or not.
For example, by developing a system that encourages/reminds
students to ask for help from instructors, or message boards
based on their logged scores and performance throughout the
semester.

This work does not only explore the effect of some design
choices, but it also presents the challenge of designing auto-
mated technology, and adapting this design for deployment in
classrooms. Our results show (as discussed in Section VI-A)
that classrooms have several challenges that can make it
hard to see effects of automated technology on students’
programming performance and learning. Such as the use
of pair programming, the distribution of instructor/TA help,
students’ prior knowledge, etc. Even if these challenges were
under control, one implication of this work is that some help
may not lead to measurably improved learning, maybe because
it is hard to measure (such as measuring learning after several
weeks where students might have already practiced well). Last
but not least, one recommendation for future classrooms, re-
gardless of the programming language used, is that researchers
need to investigate the quality of hints used (whether authored
by experts or generated by algorithms) before applying them
in classrooms. This is important since our work shows that
hints with poor quality can have a negative effect on students’
performance (as discussed in Section VI-B).

VII. LIMITATIONS AND CONCLUSION

This study suffers some limitations, many due to pair
programming. First, some students who were in the Control
group got paired with students from the Hints group and
therefore got exposed to hints. While there were only a few
instances of this occurring, it might have affected the study
results. Second, since we evaluated students’ data individually,
some students who kept working in pairs through a given task
might have submitted the same solution attempt, leading to an
inevitable duplication in the data. This may have increased our
ability to detect an impact of hints, since our unit of analysis
was individual students instead of pairs. However, this was a
necessary choice for analyzing pair programming data, where
students also worked individually. Third, pair programming is
an effective collaborative strategy that might be a reason that
students did better in both conditions. However, since pair



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 14

programming took place in both the Hints and Control
group, any differences we see should be attributable to hints,
not pair programming. It is possible that pair programming
mediated the effect of hints, allowing them to be more
effective than individual work (e.g. by providing a context
for discussing the hints, though the reverse is also possible
(e.g. if pair programming created a larger ceiling effect, with
both groups doing well)). Fourth, as discussed in Section V,
in our statistical analysis, we did not correct for multiple
comparisons, and we encourage the reader to weigh our
evidence in light of the 7 comparisons we performed, as well
as the education theory and prior work discussed in Section II.
Finally, this study took place online and during the COVID-19
pandemic, which included additional challenges for students.
While these challenges would have affected both conditions of
the study (and therefore would not be responsible for detected
differences), it may affect the generalizability of the study.

In summary, this paper presented the evolution of the iSnap
system, which provides data-driven next-step hints enhanced
with textual explanations, self-explanation prompts, and an
adaptive hint display, to address common limitations of data-
driven next-step hints. Overall, the contributions of this work
are: (1) a presentation of iSnap’s enhanced next-step hints
to improve hints’ effectiveness; (2) a controlled study in an
authentic classroom setting showing that enhanced hints im-
proved students’ programming performance in in-class assign-
ments, and programming efficiency in homework assignments;
(3) findings on how students’ usage of hints is affected by the
hints’ quality and the programming task; and (4) a conceptual
replication of prior evaluations of the iSnap system, and a
comparison of results, largely confirming their generalizability
across different populations and learning contexts.

REFERENCES

[1] Simon, A. Luxton-Reilly, V. V. Ajanovski, E. Fouh, C. Gonsalvez,
J. Leinonen, J. Parkinson, M. Poole, and N. Thota, “Pass rates in intro-
ductory programming and in other stem disciplines,” in Proceedings of
the Working Group Reports on Innovation and Technology in Computer
Science Education, 2019, pp. 53–71.

[2] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming: 12 years later,” ACM Inroads, vol. 10, no. 2, pp. 30–36,
2019.

[3] J. Gorson and E. O’Rourke, “Why do cs1 students think they’re
bad at programming? investigating self-efficacy and self-assessments
at three universities,” in Proceedings of the 2020 ACM Conference on
International Computing Education Research, 2020, pp. 170–181.

[4] R. Butler, “Determinants of help seeking: Relations between perceived
reasons for classroom help-avoidance and help-seeking behaviors in an
experimental context.” Journal of Educational Psychology, vol. 90, no. 4,
p. 630, 1998.

[5] T. W. Price, Z. Liu, V. Catete, and T. Barnes, “Factors Influencing
Students’ Help-Seeking Behavior while Programming with Human
and Computer Tutors,” in Proceedings of the International Computing
Education Research Conference, 2017.

[6] A. Mitrovic, S. Ohlsson, and D. K. Barrow, “The effect of positive
feedback in a constraint-based intelligent tutoring system,” Computers
& Education, vol. 60, no. 1, pp. 264–272, 2013.

[7] A. Corbett and J. R. Anderson, “Locus of Feedback Control in
Computer-Based Tutoring: Impact on Learning Rate, Achievement and
Attitudes,” in Proceedings of the SIGCHI Conference on Human Com-
puter Interaction, 2001, pp. 245–252.

[8] A. Gerdes, B. Heeren, J. Jeuring, and L. T. van Binsbergen, “Ask-
Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback,” International Journal of Artificial Intelligence in Education,
vol. 27, no. 1, pp. 1–36, 2016.

[9] K. Rivers and K. R. Koedinger, “Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor,”
International Journal of Artificial Intelligence in Education, vol. 27,
no. 1, pp. 37–64, 2017.

[10] T. W. Price, R. Zhi, and T. Barnes, “Evaluation of a Data-driven
Feedback Algorithm for Open-ended Programming,” in Proceedings of
the International Conference on Educational Data Mining, 2017.

[11] S. Marwan, J. Jay Williams, and T. W. Price, “An evaluation of the
impact of automated programming hints on performance and learning,”
in Proceedings of the 2019 ACM Conference on International Computing
Education Research. ACM, 2019, pp. 61–70.

[12] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown, and L. Chen, “Data
driven automatic feedback generation in the ilist intelligent tutoring
system,” Technology, Instruction, Cognition and Learning, vol. 10, no. 1,
pp. 5–26, 2015.

[13] T. Price, R. Zhi, Y. Dong, N. Lytle, and T. Barnes, “The impact of data
quantity and source on the quality of data-driven hints for programming,”
in Proceedings of the International Conference on Artificial Intelligence
in Education, 2018.

[14] B. Hartmann, D. Macdougall, J. Brandt, and S. R. Klemmer, “What
Would Other Programmers Do? Suggesting Solutions to Error Mes-
sages,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2010, pp. 1019–1028.

[15] T. W. Price, Y. Dong, and D. Lipovac, “iSnap: Towards Intelligent
Tutoring in Novice Programming Environments,” in Proceedings of the
ACM Technical Symposium on Computer Science Education, 2017.

[16] S. Marwan, N. Lytle, J. J. Williams, and T. Price, “The impact of adding
textual explanations to next-step hints in a novice programming envi-
ronment,” in Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, 2019, pp. 520–526.

[17] K. Koedinger and J. Stamper, “Using data-driven discovery of better
student models to improve student learning,” in Proceedings of the
International Conference on Artificial Intelligence in Education, 2013.

[18] V. Aleven, I. Roll, B. M. McLaren, and K. R. Koedinger, “Help helps,
but only so much: Research on help seeking with intelligent tutoring
systems,” International Journal of Artificial Intelligence in Education,
vol. 26, no. 1, pp. 205–223, 2016.

[19] K. Rivers, “Automated Data-Driven Hint Generation for Learning Pro-
gramming,” PhD, Carnegie Mellon University, 2017.

[20] W. Wang, C. Zhang, A. Stahlbauer, G. Fraser, and T. Price, “Snapcheck:
Automated testing for snap programs,” ser. ITiCSE’21, to appear.
Association for Computing Machinery, 2021.

[21] L. Gusukuma, D. Kafura, and A. C. Bart, “Authoring feedback for novice
programmers in a block-based language,” in 2017 IEEE Blocks and
Beyond Workshop (B&B). IEEE, 2017, pp. 37–40.

[22] S. Marwan, A. Dombe, and T. W. Price, “Unproductive help-seeking
in programming: What it is and how to address it,” in Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, 2020, pp. 54–60.

[23] S. Marwan, G. Gao, S. Fisk, T. Price, and T. Barnes, “Adaptive
immediate feedback can improve novice programming engagement and
intention to persist in computer science,” in Proceedings of the Interna-
tional Computing Education Research Conference, 2020, p. 194–203.

[24] P. Shabrina, S. Marwan, T. W. Price, M. Chi, and T. Barnes, “The impact
of data-driven positive programming feedback: When it helps, what
happens when it goes wrong, and how students respond,” in Educational
Data Mining in Computer Science Education Workshop @ EDM, 2020.

[25] T. Price, S. Marwan, J. Williams, and M. Winters, “An evaluation of
data-driven programming hints in a classroom setting,” in Proceedings
of the International Conference on Artificial Intelligence in Education
(forthcoming), 2020.

[26] V. J. Shute, “Focus on formative feedback,” Review of educational
research, vol. 78, no. 1, pp. 153–189, 2008.

[27] R. G. M. Hausmann, A. Vuong, B. Towle, S. H. Fraundorf, R. C. Murray,
and J. Connelly, “An evaluation of the effectiveness of just-in-time
hints,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7926 LNAI, pp. 791–794, 2013.

[28] J. Anderson, “ACT: A simple theory of complex cognition.” American
Psychologist, 1996.

[29] J. Whitehill, “Understanding act-r-an outsider’s perspective,” arXiv
preprint arXiv:1306.0125, 2013.

[30] V. Aleven, “Help Seeking and Intelligent Tutoring Systems: Theoretical
Perspectives and a Step Towards Theoretical Integration,” International
Handbook of Metacognition and Learning Technologies, vol. 28, no.
January, pp. 197–211, 2013.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 15

[31] V. Aleven, B. Mclaren, I. Roll, and K. Koedinger, “Toward meta-
cognitive tutoring: A model of help seeking with a cognitive tutor,”
International Journal of Artificial Intelligence in Education, vol. 16,
no. 2, pp. 101–128, 2006.

[32] H. Wood and D. Wood, “Help seeking, learning and contingent tutoring,”
Computers & Education, vol. 33, no. 2-3, pp. 153–169, 1999.

[33] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst, “Misconception-
driven feedback: Results from an experimental study,” in Proceedings
of the 2018 ACM Conference on International Computing Education
Research, 2018, pp. 160–168.

[34] D. Toll, A. Wingkvist, and M. Ericsson, “Current state and next steps on
automated hints for students learning to code,” in 2020 IEEE Frontiers
in Education Conference (FIE). IEEE, 2020, pp. 1–5.

[35] M. Suarez and R. Sison, “Automatic construction of a bug library
for object-oriented novice java programmer errors,” Intelligent Tutoring
Systems, 2008.

[36] S. Gross, B. Mokbel, B. Paassen, B. Hammer, and N. Pinkwart,
“Example-based feedback provision using structured solution spaces,”
International Journal of Learning Technology, vol. 9, no. 3, p. 248,
2014.

[37] T. Lazar and I. Bratko, “Data-Driven Program Synthesis for Hint
Generation in Programming Tutors,” in Proceedings of the International
Conference on Intelligent Tutoring Systems. Springer, 2014, pp. 306–
311.

[38] J. Stamper and T. Barnes, “The hint factory: Automatic generation
of contextualized help for existing computer aided instruction,” in
Proceedings of the 9th International Conference on Intelligent Tutoring
Systems Young Researchers Track, 2008.

[39] T. W. Price, R. Zhi, and T. Barnes, “Hint Generation Under Uncertainty:
The Effect of Hint Quality on Help-Seeking Behavior,” in Proceedings
of the AIED Conference, 2017.

[40] A. Hicks, B. Peddycord, and T. Barnes, “Building games to learn from
their players: Generating hints in a serious game,” in International
Conference on Intelligent Tutoring Systems. Springer, 2014, pp. 312–
317.

[41] T. W. Price, Y. Dong, R. Zhi, B. Paaßen, N. Lytle, V. Cateté, and
T. Barnes, “A Comparison of the Quality of Data-driven Programming
Hint Generation Algorithms,” International Journal of Artificial Intelli-
gence in Education, 2019.

[42] R. R. Choudhury, H. Yin, and A. Fox, “Scale-driven automatic hint
generation for coding style,” in International Conference on Intelligent
Tutoring Systems. Springer, 2016, pp. 122–132.

[43] A. Ahadi, A. Hellas, P. Ihantola, A. Korhonen, and A. Petersen,
“Replication in computing education research: researcher attitudes and
experiences,” in Proceedings of the 16th Koli Calling International
Conference on Computing Education Research, 2016, pp. 2–11.

[44] M. T. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser, “Self-
explanations: How students study and use examples in learning to solve
problems,” Cognitive science, vol. 13, no. 2, pp. 145–182, 1989.

[45] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann, “Writing Reusable Code Feedback at Scale with
Mixed-Initiative Program Synthesis,” in Proceedings of the ACM Con-
ference on Learning @ Scale. ACM, 2017, pp. 89–98.

[46] A. Renkl and R. K. Atkinson, “Learning from examples: Fostering
self-explanations in computer-based learning environments,” Interactive
learning environments, vol. 10, no. 2, pp. 105–119, 2002.

[47] J. J. Williams, T. Lombrozo, A. Hsu, B. Huber, and J. Kim, “Revising
learner misconceptions without feedback: Prompting for reflection on
anomalies,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’16. New York, NY, USA:
ACM, 2016, pp. 470–474.

[48] C. Conati and K. VanLehn, “Toward Computer-based Support
of Meta-cognitive Skills: A Computational Framework to Coach
Self-explanation,” International Journal of Artificial Intelligence in
Education, vol. 11, no. 1, pp. 389–415, 2000. [Online]. Available:
http://telearn.archives-ouvertes.fr/hal-00197335/

[49] A. Vihavainen, C. S. Miller, and A. Settle, “Benefits of Self-explanation
in Introductory Programming,” Proceedings of the 46th ACM Technical
Symposium on Computer Science Education - SIGCSE ’15, vol. 68, pp.
284–289, 2015.

[50] V. Aleven, E. Stahl, S. Schworm, F. Fischer, and R. Wallace, “Help
Seeking and Help Design in Interactive Learning Environments Vincent,”
Review of Educational Research, vol. 73, no. 3, pp. 277–320, 2003.

[51] Q. Hao, D. H. Smith IV, N. Iriumi, M. Tsikerdekis, and A. J. Ko,
“A systematic investigation of replications in computing education
research,” ACM Transactions on Computing Education (TOCE), vol. 19,
no. 4, pp. 1–18, 2019.

[52] D. Weintrop and U. Wilensky, “Using commutative assessments to
compare conceptual understanding in blocks-based and text-based pro-
grams.” in ICER, vol. 15, 2015, pp. 101–110.

[53] J. Bruin. (2011 (accessed April 6, 2020), Feb.) In-
troduction to linear mixed models. [Online]. Available:
https://stats.idre.ucla.edu/stata/ado/analysis/

[54] C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates:
current use, calculations, and interpretation.” Journal of experimental
psychology: General, vol. 141, no. 1, p. 2, 2012.

[55] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars.” The All Ireland
Journal of Teaching and Learning in Higher Education, vol. 9, 2017.

[56] L. Margulieux and R. Catrambone, “Using Learners’ Self-Explanations
of Subgoals to Guide Initial Problem Solving in App Inventor,” pp. 21–
29, 2017.

[57] K. J. Rothman, “No adjustments are needed for multiple comparisons,”
Epidemiology, pp. 43–46, 1990.

[58] T. V. Perneger, “What’s wrong with bonferroni adjustments,” Bmj, vol.
316, no. 7139, pp. 1236–1238, 1998.

[59] A. D. Althouse, “Adjust for multiple comparisons? it’s not that simple,”
The Annals of thoracic surgery, vol. 101, no. 5, pp. 1644–1645, 2016.

[60] S. Skrivanek, “The use of dummy variables in regression analysis,” More
Steam, LLC, 2009.

[61] Y. Dong, S. Marwan, V. Catete, T. Price, and T. Barnes, “Defining tin-
kering behavior in open-ended block-based programming assignments,”
in Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. ACM, 2019, pp. 1204–1210.

[62] R. C. Murray and K. VanLehn, “A comparison of decision-theoretic,
fixed-policy and random tutorial action selection,” in International
Conference on Intelligent Tutoring Systems. Springer, 2006, pp. 114–
123.

[63] M. Roy and M. T. Chi, “The self-explanation principle in multimedia
learning,” The Cambridge handbook of multimedia learning, pp. 271–
286, 2005.

[64] B. Shih, K. R. Koedinger, and R. Scheines, “A response time model
for bottom-out hints as worked examples.” Proceedings of the 1st
International Conference on Educational Data Mining, EDM, 2008.

[65] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and
C. Mooney, “Effective compiler error message enhancement for novice
programming students,” Computer Science Education, vol. 26, no. 2-3,
pp. 148–175, 2016.

[66] B. A. Becker, K. Goslin, and G. Glanville, “The effects of enhanced
compiler error messages on a syntax error debugging test,” in Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science
Education, 2018, pp. 640–645.

Samiha Marwan is a Computing Innovation (CI)
Fellow and a Postdoctoral Researcher at the Uni-
versity of Virginia since March 2022. Samiha com-
pleted her PhD at NC State University in 2021. Her
primary research focus is on developing intelligent
support features in block-based programming lan-
guages to improve novices’ cognitive and affective
outcomes.

Thomas W. Price is an Assistant Professor of
Computer Science at NC State University. He directs
the Help through INTelligent Support (HINTS) Lab,
which develops learning environments that automat-
ically support students through AI and data-driven
help features. Dr. Price has been recognized by
the STARS Computing Corps for his leadership in
computing outreach.


