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Abstract—Theories on learning show that formative feedback
that is immediate, specific, corrective, and positive is essential to
improve novice students’ motivation and learning. However, most
prior work on programming feedback focuses on highlighting
student’s mistakes, or detecting failed test cases after they submit
a solution. In this article, we present our adaptive immediate
feedback (AIF) system, which uses a hybrid data-driven feedback
generation algorithm to provide students with information on
their progress, code correctness, and potential errors, as well as
encouragement in the middle of programming.We also present an
empirical controlled study using the AIF system across several
programming tasks in a CS0 classroom. Our results show that the
AIF system improved students’ performance, and the proportion
of students who fully completed the programming assignments,
indicating increased persistence. Our results suggest that the AIF
system has potential to scalably support students by giving them
real-time formative feedback and the encouragement they need to
complete assignments.

Index Terms—Adaptive feedback, block-based programming,
formative feedback, subgoals feedback.

I. INTRODUCTION

NOVICE block-based programming environments like

Scratch [1], Snap! [2], and Alice [3] were designed to

foster more positive experiences with programming for novices

by enabling creativity and eliminating syntax errors [2], [4],

[5]. Increasingly, introductory programming classrooms in K-

12 and college classrooms engage novices to create interesting

programs (e.g., with interactive input and graphical output), in

block-based environments to create a positive first experience

with programming. However, since novices have little prior

knowledge, they often face uncertainty when programming,

e.g., not knowing how to start or whether their code is correct

or not [6], especially during more complex and open-ended

assignments, which may take 30–60 min, and have many dif-

ferent correct solution approaches [7]. Without confirmation

that they are making progress as they work, students may lose

motivation and give up early [8], or even delete correct code

that they think is responsible for errors [9], [10]. Additionally,

without the skills to detect errors, students may submit incor-

rect code without realizing it, leading to lower course perfor-

mance and missed opportunities to debug their errors.

It is, therefore, especially critical that novice programmers

have access to timely, formative feedback to address this

uncertainty. In a review on effective feedback, Shute [11]

argued that formative feedback can improve students’ motiva-

tion and learning. Formative feedback is defined as a type of

task-level feedback that provides specific, timely information

to a student in response to a particular problem or task based

on the student’s current ability [11]. From a cognitive learning

theory (CLT) perspective, formative feedback can reduce

students’ uncertainty about how well or poorly they are per-

forming on a task [12], [13], and it can therefore increase

students’ motivation and persistence to complete tasks by

revealing the progress that students have already made [14].

However, it is hard for computing instructors to provide such

formative feedback for every student, especially in larger clas-

ses, or during homework outside of class. It is also difficult to

develop automated feedback, since the interactive input and

graphical output that make novice programming environments

engaging also make it difficult to assess student code with tra-

ditional input/output-based test cases.

While some automated feedback approaches have been

developed for block-based environments [6], [14]–[16], they

have important limitations. First, some of these systems focus

on negative corrective feedback, with less emphasis on positive

encouragement for students that marks their progress [17]. Sec-

ond, some of these systems either require extensive expert effort

in hand authoring rules, which is hard to scale across assign-

ments [14], [16], or use error-prone data-driven algorithms to

generate such feedback [10], [18]. Lastly, andmost importantly,

few of these systems have been evaluated in authentic class-

room settings to measure their impact on student outcomes.

In this article, we present an adaptive immediate feedback

system (AIF), shown in Fig. 1, that leverages a hybrid data-

driven model refined with experts’ constraints to generate for-

mative feedback on programming tasks’ subgoals. This is our

third version of the AIF system, which we call AIF 3.0, or for

simplicity, just AIF. This system offers students immediate,

specific, continuous feedback on their progress through a pro-

gramming assignment in the Snap! environment. To do so, the

algorithm behind the AIF system breaks a program down into
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a set of subgoals (i.e., programming task objectives) and cal-

culates student progress on each from 0% to 100%, which is

updated every time a student edits their code. The AIF system

interface then presents this progress feedback through a sub-

goal list, and offers encouraging messages as students prog-

ress. Our AIF system improves over prior systems that

provide formative feedback [12], [16]–[18], and extends them

in three critical ways. First, the system uses a hybrid data-

driven subgoal detector algorithm to assess students’ progress

on programming tasks’ subgoals, described in detail in [19].

These subgoals are generated automatically from student data,

and then refined using expert-constraints, rather than purely

expert-authored rules [14], [16], or a purely data-driven

model [18]. This allowed us to scale the feedback to support a

multi-week programming unit, and ensure higher quality feed-

back. Second, our AIF system can assess students progress

more granularly, providing an estimation of their progress

from 0% to 100%, rather than binary correct/incorrect feed-

back, giving students more of a sense of progress. Third, using

effective design strategies, the AIF system provides all four

forms of effective formative feedback, i.e., feedback that is

corrective, specific, immediate, and positive.

We also present an empirical evaluation of the AIF 3.0 sys-

tem over three weeks of a university-level introductory com-

puting course for nonmajors. This evaluation goes beyond

prior evaluations of block-based feedback tools, which were

limited to technical assessments [6], lab studies [20], or sin-

gle-day studies [10], [14], [18]. We also leverage multiple

assessment mechanisms to evaluate the system’s impact,

including a transfer programming task, posttest, and surveys.

This evaluation helps us to understand the potential for such

systems for wider adoption in classrooms.

This article seeks to answer the following research questions.

In an authentic classroom setting, what impact does hybrid

data-driven AIF have on students’ RQ1) performance, RQ2)

rate of task completion, and RQ3) learning, and RQ4) how is it

perceived by students?We hypothesize that by showing students

their progress on assignment subgoals, and by highlighting

incomplete subgoals, the AIF 3.0 systemwill encourage students

to persist longer until completing the programming tasks, lead-

ing to better performance, and ultimately more learning from

those tasks. Our results show that students using the AIF 3.0 sys-

tem performed significantly better overall on programming

tasks, and had significantly higher overall completion rates. This

suggests that students were motivated by the AIF 3.0 system to

persist in completing these tasks. Additionally, we found stu-

dents who used the AIF 3.0 system had higher scores in a future

transfer task and a posttest, but the difference was not signifi-

cant, suggesting inconclusive results. Survey data highlight how

the AIF 3.0 system helped students and also suggest tradeoffs in

the design of the system.We also present case studies illustrating

how students can use the AIF 3.0 system and reasons why the

AIF 3.0 system led to improvements in student performance

and completion rates, compared to students not using the AIF

3.0 system.

In summary, the key contributions of this work are the fol-

lowing: 1) the AIF 3.0 system that provides real-time forma-

tive feedback, derived from a hybrid data-driven algorithm, in

a block-based programming environment; 2) a controlled

empirical study in an authentic classroom setting showing

increased student performance, and completion rates, suggest-

ing that the AIF system can increase students’ persistence to

complete programming tasks; 3) case studies illustrating how

such feedback can encourage students to persist to complete

programming assignments correctly, and evidence that the

system can be effective in an authentic classroom context.

II. RELATED WORK

In this section, we review theoretical perceptions and

empirical evidence for the design of effective, adaptive forma-

tive feedback, and how it impacts student outcomes.

A. Learning Theories and Empirical Evidence on Feedback

Research on formative feedback suggests that it is effective

when it is corrective, specific, immediate, and positive [11],

[21], [22], as described in more detail below.

Corrective feedback tells students not only whether their

answer is right or wrong, but also provides information to help

them achieve a more correct response (e.g., a hint about the

solution or a corrective action) [11]. While many automated

feedback systems for programming highlight incorrect behav-

ior (e.g., failed test cases [15], syntax errors [23]), few provide

clear, actionable information to help a student address these

issues, perhaps because such feedback is difficult to design [24].

From a theoretical perspective, such corrective feedback would

be more effective because it makes learners aware of their

errors and guides them to provide the right answer [21]. In prac-

tice, Gusukuma et al.[17] conducted an empirical study show-

ing that adding corrective information on top of detecting

students’ programming misconceptions (i.e., misconception

feedback), improved students’ performance in a posttest.

Feedback is specific when it provides information about how

and where a student’s work does or does not meet assignment

goals, such as a feedback that tells the student what is missing

in their code, not just that their code is incomplete [11], [25].

Fig. 1. AIF 3.0 system, with subgoal list (a), and pop-up message (b), aug-
menting the Snap! block-based programming environment.
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From a theoretical perspective, Shute [11] and Thurlings et al.

[21] argued that formative feedback is effective when it is spe-

cific and clear. This is because feedback lacking specificity can

increase students’ uncertainty and the cognitive load needed to

understand the feedback or respond to it, which can lead to

decreased learning [11], [26]. Several tutoring systems for pro-

gramming have been shown to improve student performance

with specific feedback, such as error highlights and detection

of failed test cases [15], [17]. However, there is still a lack of

research on how to generate automated specific feedback in

programming due to the multiple approaches students can take

to reach a correct solution.

Feedback is immediate when it is provided right after a stu-

dent has responded to an item (or made an action) [11]. While

studies have shown benefits for both delayed and immediate

feedback [11], some suggest that immediate feedback is more

helpful for students with less prior knowledge or less motiva-

tion [11], [27]. From a theoretical perspective, immediate, spe-

cific feedback can help students to focus their attention on the

error at the time that the error occurs, where students can

actively correct it before moving on and, therefore, errors do

not compound and the salience of the feedback is

increased [21]. This is reflected by empirical studies that found

an increase in novices’ programming performance and learning

when they receive immediate feedback [17], [20], [28].

Positive feedback praises students when they achieve a step

(or a task) appropriately (e.g., by saying: “Good Move!”) [23],

[29]. Studies in human tutoring dialogs and cognitive learning

theories (CLT) show that positive feedback can increase

students’ confidence in their abilities, decrease their uncer-

tainty about their answer steps, and motivate them to learn [12],

[30]–[32]. Such positive feedback can also improve students’

affective outcomes [14]. However, positive feedback is not

always present in intelligent tutoring systems because such sys-

tems were primarily designed to intervene when they detect

incorrect steps or solutions [12], [23], [33]. As a result, few

feedback systems can provide positive feedback proactively in

a manner similar to human tutors [12], [23].

Overall, these feedback characteristics can help students

close the gap between their actual and the desired outcomes

and can have long-lasting positive impacts on student behav-

ior [21], [22]. While there are several other potential charac-

teristics of effective feedback [21], we focus on corrective,

specific, immediate, and positive feedback because they are

not usually available in programming environments.

B. Adaptive Formative Feedback in Practice

A growing body of work has developed and evaluated com-

puter-based tutors that provide automated programming feed-

back [34]–[37]. However, most tutoring systems in computing

education are only capable of providing feedback with a subset

of Scheeler et al.’s [22] desired qualities—immediate, specific,

positive, and corrective. For example, assessment feedback

systems, such as autograders, can provide corrective feedback

when student code passes or fails a test case; however, this

feedback lacks positivity, and it is not immediate since it is

offered only when the student submits their code [15], [37].

Other tutoring systems provide hints to help students reach the

correct solution [20]. While these hints can be specific and

immediate; they do not confirm students’ correct steps. An

exception is the work of Gusukuma et al. [16], who developed

a specification language that allows human experts to author

formative feedback to novice programmers in a block-based

programming environment, supporting various forms of forma-

tive feedback, e.g., immediate, corrective, or elaborative feed-

back. However, their specification language was tested on only

one programming task, and its impact on students’ outcomes

was not evaluated [16].

1) Benefits of Formative Feedback in Practice: There are

few tutoring systems that investigated the benefits of forma-

tive feedback on students in real classrooms. For example, the

most recent version of the iList tutor (iList-5), a tutoring sys-

tem for linked lists, has been shown to be as effective as

human tutors by providing feedback, that is corrective, imme-

diate, positive, and also proactively anticipate students’ future

moves [23]. The SQL tutor, a database tutor, has been shown

to improve student performance through corrective, delayed

feedback. Furthermore, adding positive feedback to the SQL

tutor has been shown to help students complete problems

much faster, (i.e., achieved mastery in learning), compared to

those who only only received negative feedback [12].

2) Methods of Generating Formative Feedback in Block-

Based Environments: Recent work by Gusukuma et al. [17]

developed misconception feedback for block-based, interac-

tive programs based on instructors’ analyses of prior student

work, and found that it improved students’ performance in a

classroom study. Wang et al. [37] created expert-authored

rules to provide adaptive feedback that is positive and correc-

tive, finding qualitatively that such feedback engaged students

in solving short programming tasks faster. Both of these meth-

ods require extensive expert effort, making them hard to scale

across tasks. In contrast, the AIF system we present here

achieves similar characteristics of effective feedback, using a

method that is more scalable to new tasks [19].

III. ADAPTIVE IMMEDIATE FEEDBACK SYSTEM DESIGN

In this section, we present the AIF 3.0 system that uses a

hybrid data-driven model to provide students with effective

formative feedback. The main idea of the AIF system is to

simplify the students’ learning process, and motivate them to

complete their programming tasks, leading to an increase in

students’ performance and learning. To do so, we designed the

AIF 3.0 system to provide feedback that is corrective, spe-

cific, immediate, and positive, which are key aspects of effec-

tive formative feedback for learning as specified in the

literature [11], [22]. The AIF 3.0 system augments the Snap!

block-based programming environment with the following

three main components.

1) A subgoal list, which breaks down the current program-

ming task requirements into 3–5 smaller, more manage-

able task objectives/subgoals [shown in Fig. 1(a)].
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2) Pop-up messages, which provide students with encour-

aging messages based on their progress [shown in

Fig. 1(b)].

3) An algorithm for data-driven subgoal detection, proposed

and evaluated in prior work [19], which we used in the

AIF 3.0 system to generate the list of subgoals, and

detects students’ progress on them in real time, driving the

feedback in the subgoal list and the pop-upmessages.

The first two components represent the interface, described

in Section III-A, while the third component presents the back

end of the AIF 3.0 system, described in Section III-B.

A. AIF 3.0 System Interface

Our current AIF design is a product of years of prototyping,

deployment, and refinement [10], [14], [18]. Below we

describe AIF 3.0’s current interface components in detail.

1) Subgoal List: The primary feature of our AIF system is a

list of subgoals/objectives, and feedback on student progress on

completing each subgoal, as shown in Fig. 1(a). The subgoal list

breaks down a given programming task into a set of smaller objec-

tives (i.e., subgoals) that students can attempt one at a time, which

has been shown to be effective in improving students’ perfor-

mance in programming [38]. In particular, we created the subgoal

list for three reasons. First, many novices struggle with how to

start an assignment [8], [32], so we provide a concrete set of steps

(a plan) to get them started. Second, for complex programming

tasks, especially open-ended ones, students must navigate a large

search space, which can lead to high cognitive load [39]. Our intu-

ition was that breaking a problem into smaller subgoals, which are

smaller structural parts of the overall programming assign-

ment [38], should mitigate this challenge and increase students’

ability to solve the task. The process we used to generate subgoals

is detailed in Section III-B. Third, for subgoals to be effective, stu-

dents need to know when they have completed one subgoal, so

they can focus on the next. To reduce this uncertainty about sub-

goal (and assignment) completion, AIF 3.0 continuously

updates each subgoal with a progress bar after each edit to show

the student’s estimated progress on each subgoal. This progress is

calculated by an algorithm that analyzes student code after each

edit, as described in Section III-B. Fig. 1(a) shows the subgoal list

and progress feedback for the Squiral assignment, whose output

is shown in Fig. 4. For example, one subgoal is to “Make each

side of the Squiral longer.”

a) Subgoal list design: When students open Snap! and

choose which task to work on, they will see a list of subgoals

shown as objectives, each with a short, hand-authored label.1 The

subgoal list is placed within the programming environment to

align with the multimedia learning principle of contiguity, which

states that information needed to perform a task is most useful

when it is placed next to where it is needed [40]. Initially, each

subgoal background is colored grey to indicate that none of the

subgoals have been attempted. Students can interact with the

subgoal list in twoways. First, they can click on a subgoal to high-

light it in yellow and get more information, as shown in “subgoal

2” (i.e., obj2) in Fig. 2. This information consists of expert-auth-

ored explanations derived from the task instructions, since

research suggests that students prefer feedback augmented with

explanatory text [41], and find it more interpretable [42]. Second,

students can double-click on a subgoal to mark it as complete (as

shown in “obj 1” in Fig. 2), aligning with self-regulated learning

principles, which state that learning is improved when students

track their own progress and self-assess their learning pro-

cess [43]. This feature was also recommended by students in eval-

uations of earlier versions of the system [14], [32].

b) Adaptive progress feedback display: The subgoal list

adapts to students’ code edits by providing feedback on

students’ progress on each subgoal in real time, aligned with

the learning design principles of specific, immediate feedback

that enables students to understand what specific actions they

have just taken, that are leading to mistakes or progress.

Rather than telling students only whether a subgoal is com-

plete or not, as in typical programming autograders [14], [15],

[37], AIF 3.0 presents a progress bar underneath each sub-

goal to show how far students have progressed toward com-

pleting that subgoal, as shown in Fig. 2. This provides

students with specific, corrective feedback on each edit they

make to their code, by showing how that code edit increased

or decreased the estimated progress toward a correct solution.

c) Promoting self-assessment: A key aspect to improve

novice programmers’ learning is to promote them to self-

assess whether their program is correctly solving the given

problem [32]. Therefore, we have purposefully designed two

important features to encourage self-assessment and self-regu-

lated learning in the AIF 3.0 system. First, we provide trans-

parency into how the system works, explaining to students

that the algorithm that tracks their progress may sometimes

fail to recognize correct solutions, as described below. Sec-

ond, we set the maximum progress on each subgoal to 95%,

instead of 100%, to remind students that it is up to them to

self-assess and double-click on each subgoal when they decide

it is complete, which is suggested by prior work [32].

2) Pop-Up Messages: We developed pop-up messages

because prior work shows that positive feedback that praises

students’ accomplishment and perseverance can promote

students’ confidence [44], which may increase their persistence to

complete tasks. Therefore, the AIF 3.0 system provides positive

feedback in the form of congratulatingmessages to praise students

Fig. 2. Subgoal list in Squiral assignment, with four objectives (i.e., sub-
goals), and explanation of each on the right.

1 We call the subgoals objectives in the interface to make it more under-
standable to novices; however, we use the word subgoals in the article for
consistency.
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when they complete a subgoal or fix a broken subgoal. It also pro-

vides encouragingmessages when students persevere by spending

a long time without any progress, as shown in Fig. 1(b). To design

these messages, one researcher asked undergraduate students to

construct messages to praise a friend’s achievement when they

complete a subgoal, or motivate a friend when they are struggling

or losing progress. While students are programming, the AIF

3.0 system selects a personalized pop-up message based on

students’ code and actions. For example if the system detects the

completion of a subgoal, it will pop up a congratulating message

like: “Good job!,” or an encouraging message like “Don’t give

up” when a student has spent more than 4 min without making

any progress.2 Table I shows examples of pop-upmessages.

B. Data-Driven Subgoal Detection Algorithm

The AIF system provides adaptive immediate feedback on

subgoals in reaction to students’ code edits. To do so, the algo-

rithm behind the AIF system must perform two operations.

First, for a given programming task, it must break the task

down into a set of subgoals. Second, the algorithm must be

able to assess student code at any time (i.e., whether complete

or incomplete), and evaluate how complete each subgoal is

(0%–100%). This feature allows the system to provide adap-

tive immediate feedback that is specific, corrective and posi-

tive, as we discuss in detail below.

In prior work, there are two common approaches to gen-

erate and assess subgoals: 1) expert-authored; and 2) data-

driven approaches. For expert-authored approaches, human

experts define the subgoals of a correct solution, and create

autograders for each objective to detect if it is complete or

incomplete, for example using static code analysis [14],

[16]. While expert-authored models are capable of provid-

ing highly accurate feedback, creating them is time consum-

ing, requires extensive expert effort, and is hard to

implement for open-ended programming tasks due to the

large number of possible solutions. The second common

approach uses data-driven models, which can detect subgoal

completion in the current student’s code based on features

learned from historical student data [18]. While data-driven

approaches are highly scalable across programming tasks,

and require less expert effort, they are dependent on the

quality of prior students’ solutions, leading to a possibility

of providing inaccurate feedback [10].

In this article in the AIF 3.0 system, we applied a hybrid

model that combines both a data-driven model refined with

expert constraints to detect subgoals [19]. As evaluated in

prior work [19], the hybrid model can achieve the best of both

the expert and data-driven models—building a system that

can intelligently address the diverse but correct ways that stu-

dents solve problems, while benefiting from human expertise

in filtering, combining and communicating a high quality

data-driven subgoals. In the following paragraphs, we describe

the methodology of applying the hybrid model for multiple

programming tasks in the AIF 3.0 system; however, the tech-

nical details of the hybrid model, including the data-driven

detectors and expert-authored modifications, and their accu-

racy evaluation are more completely described in our prior

work [19], [45].

The AIF 3.0’s hybrid data-driven model is responsible for

subgoal generation, progress assessment, and feedback gener-

ation. This hybrid model extends a data-driven feature detec-

tor (DDFD) algorithm developed by Zhi et al. [45]. The

DDFD algorithm is designed to extract common features pres-

ent in prior students’ correct solutions (e.g., from prior semes-

ters) [45]. In brief, the DDFD algorithm works as follows.

First, it translates students’ correct solutions into abstract syn-

tax trees (ASTs). For example, Fig. 3 shows an example of

students’ code, and its corresponding AST. Second, it extracts

common code shapes (i.e., subtrees of ASTs); such that a

group of code shapes can represent a feature of a correct solu-

tion. More precisely, a feature describes a distinct property for

a correct solution, such as: using a ‘procedure with one param-

eter’ in the code, or using a “move” block nested with a vari-

able are two distinct features of a correct solution as shown in

Fig. 3(a) and (c), respectively. The DDFD then filters redun-

dant code shapes, and performs hierarchical clustering of fre-

quently co-occurring code shapes to generate more coherent

features.

In addition, the DDFD algorithm also defines disjunction

shapes that identify when there are multiple, distinct ways of

solving a subgoal, i.e., a set of code shapes where one is

TABLE I
EXAMPLES OF POP-UP MESSAGES IN THE AIF SYSTEM

Fig. 3. Example of an abstract syntax tree (AST) of Squiral task code. Fea-
tures A, B, and C are examples of Squiral data-driven features.

2 We chose a threshold of 4 min to limit pop-up distractions.
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present in most solutions, but not others. For example, a stu-

dent can draw a square using a “loop” or a set of redundant

blocks, and a correct solution must have only one of these dis-

junction shapes. The ability to detect disjunction shapes ena-

bles the DDFD algorithm to detect subgoals from multiple

different implementation strategies, allowing it to help stu-

dents with diverse code. However, it is limited to the imple-

mentations learned from prior students’ correct solutions.

Once the DDFD algorithm learns features of correct solutions,

it can be applied to new students’ solutions to detect the com-

pletion or absence of these features. Since the DDFD algo-

rithm works regardless of whether student code is complete or

not, it can be used to provide immediate feedback on feature

completion.

Despite its advantages, the DDFD algorithm suffers the fol-

lowing limitations. First, these data-driven features are fine-

grained, making it hard for students, and sometimes even for

instructors, to interpret the features’ code shapes. Second, the

DDFD algorithm can generate a large number of features for a

small task with just 5–8 lines of code, due to the variety of stu-

dent strategies to achieve correct solutions. These limitations

make it likely that students would not be able to use or inter-

pret information about features detected using DDFD algo-

rithm on their code.

To tackle these challenges, we made several improvements

to the DDFD algorithm to detect subgoal completion, instead

of feature completion, in a more interpretable and concrete

way. We call our modified algorithm a hybrid subgoal detec-

tor, and its overall algorithm consists of five steps, using both

automated and expert insight, which we explain below (with

more details here [19]).

First, the hybrid subgoal detector algorithm applies the DDFD

algorithm to students’ correct solutions from several prior semes-

ters to generate clusters of data-driven features. Second, human

experts manually group the generated clusters intomoremeaning-

ful clusters that are interpretable and reflect discrete assignment

requirements. For instance, a programming task that includes 7–

10 lines of code is broken down into three to four subgoals which

reflect objectives found in the task instructions provided to stu-

dents. To clarify the difference between a feature and a subgoal,

consider the following example in Fig. 3. Assume that the DDFD

algorithm generates two features: one requires that student code

includes a procedure with one parameter (Fig. 3, Feature A); the

second feature requires the evaluation of a procedure with one

parameter (i.e., calling a procedure), Fig. 3, Feature B. A mean-

ingful subgoal in this case can be the combination of these two

features, which means that a correct solution must have a proce-

dure with one parameter which is called (i.e., evaluated) in the

main script, as shown in Fig. 3, subgoal A.

Third, we developed a percent progress estimate that

reflects student code’s progress on each subgoal. For example,

if the algorithm generates four data-driven subgoals for a

given exercise, and for a given student code the algorithm out-

puts {50%, 0, 0, 80%}, it means that the student code has

completed 50% of subgoal 1, 80% of subgoal 4, and 0% of

subgoals 2 and 3. The algorithm calculates this percentage by

calculating how many code features needed for a given

subgoal are present in students’ code. This new progress track-

ing feature developed for AIF 3.0 allowed it to provide more

specific progress feedback.

Fourth, we modified the generated data-driven features by

adding human constraints to improve the quality of subgoal

detection using the same validated method in our prior

work [19]. First, to understand where the purely data-driven

subgoal detectors were not accurate, we applied them to prior

students’ code snapshots (an average of 150 code edit by each

student for a given programming task) and logged the output

of the subgoal detectors (e.g., for a given student’s code edit,

the subgoal detection output might be [1, 0, 0, 1], meaning

that subgoals 1 and 4 are detected). Then, a group of three

human experts (researchers in block-based programming)

searched for false detections—instances where the algorithm

detects the completion or incompleteness of a subgoal but the

human expert disagrees. Considering these false detections,

we modified the detectors by adding, editing or deleting code

features that made up the subgoal detector. This is possible

because the data-driven subgoal detectors search for simple,

human-interpretable code shapes in students’ code, and the

experts were able to modify those code shapes directly with

simple changes, without having to author them from scratch.

For example, in the Squiral task (shown in Fig. 3), one of the

required elements of a correct solution is using the ‘pen down’

block, needed for drawing. This element is detected by the

subgoal 2 detector (shown in Fig. 2); however, the original,

data-driven subgoal 2 detector detects this element only if the

“pen down” block is inside of a procedure. This works most of

the time, but not if a student adds the “pen down” block out-

side a procedure, making a false negative detection. To fix this

false detection, human experts modified the feature to detect

the presence of the “pen down” block inside or outside a pro-

cedure. After updating all detectors, we ran the hybrid subgoal

detectors (i.e., the data-driven subgoal detectors with experts’

modifications) on prior students’ data, ensuring that the false

detections were �100% corrected. In our prior work we evalu-

ated this process on the Squiral task, where we found the accu-

racy of the data-driven subgoal detection increased from 74%

to 88% overall when we added three expert modifications to

create hybrid detectors, with individual subgoals improving

by up to 34% points in accuracy [19]. In this article, we

applied the hybrid subgoal detectors on two additional tasks

(PolygonMaker and Daisy) in the AIF 3.0 system, described

in Section IV-B, to allow for evaluation of the potential for

AIF to impact student outcomes across tasks.3

Fifth and last, for all the three programming tasks, we aug-

mented each subgoal with a short, human-authored label

designed to be interpretable for both students and instructors.

We presented these labels in a subgoal list for each task as

explained in Section III-A1. We then use this list to present

feedback on each subgoal using the hybrid algorithm that con-

tinuously runs in the back end of the Snap! programming

environment.

3 Subgoal labels of PolygonMaker and Daisy tasks are available at https://
go.ncsu.edu/subgoals2021.
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1) Initial Results: In Summer 2019, we developed and

tested AIF version 1.0 that uses expert-authored autograders,

called objective detectors, to detect the absence or completion

of each objective in student code [14]. We embedded these

autograders in the Snap! environment to provide students with

adaptive immediate feedback during programming. The initial

interface differed from the current version in three ways: 1)

used only short labels for subgoals; 2) provided correctness

feedback, i.e., if a subgoal is complete or not; and 3) did not

allow students to check off a subgoal if they think it is com-

plete. In a controlled study, we evaluated AIF 1.0 with stu-

dents performing short programming tasks in a 1-day summer

workshop [14]. We found that AIF 1.0 improved students’

engagement with the programming tasks, and increased

students’ intentions to persist in computer science.

In Spring 2020, we built AIF 2.0 using a data-driven fea-

ture detection (DDFD) approach, described in Section III-B, to

learn subgoals from prior correct solutions [18], instead of

expert-authored autograders. AIF 2.0 has a similar interface

to AIF 1.0. We conducted a controlled study for one program-

ming homework task and showed that AIF 2.0 increased

students’ engagement as measured by increased time on task.

However, investigating the quality of data-driven subgoals

detections, we found instances where false detections (i.e., false

positives and false negatives) occurred, which might have

affected students’ performance or trust in the learning environ-

ment [10]. To mitigate these inaccuracies, we developed a

hybrid data-driven algorithm, described and evaluated in more

detail in [19], which adds human constraints to improve the

quality of the generated data-driven feedback. For simplicity,

Table II shows a summary of the differences between versions

of the AIF system.

The remainder of this article presents our study of AIF 3.0,

which uses the hybrid data-driven model for multiple assign-

ments across multiple weeks in an authentic introductory non-

majors computer science classroom. For simplicity, we will

refer to AIF 3.0 as AIF throughout the rest of the article.

IV. METHOD

We conducted a controlled classroom study in Spring

2021 in an introductory programming course (CS0) at a public

U.S. university. This course introduces the principles of com-

puter science (CS) to nonmajors, where students use the Snap!

environment to learn programming. Snap! is a block-based pro-

gramming environment built by UC Berkeley and designed to

be used in the Beauty and Joy of Computing (BJC) curriculum

used in CS principles courses for nonmajors in several universi-

ties [2]. Over the years, the Snap! environment has successfully

leveraged the affordances of block-based programming lan-

guages for more complex problems (e.g., recursion) needed in

college level introductory computing courses [2].

In this article, our research questions are the following.

RQ: In an authentic classroom setting, what impact does a

hybrid data-driven AIF have on (RQ1:) students’ perfor-

mance, (RQ2:) task completion rate, and (RQ3:) learning,

and (RQ4:) how is it perceived by students? We hypothe-

sized that AIF will help students know whether they are pro-

gressing or not, encouraging them to persist longer, which

will lead to higher performance (measured by students’

grades in these tasks) than students in the Control group

(H1-performance). Furthermore, knowing that their code is

incorrect or incomplete will motivate students to keep work-

ing to finish it fully, which will result in higher rates of fully

correct, complete code being turned in (H2-completion).

Additionally, by completing more of the assignment cor-

rectly, we hypothesize that students will learn more, which

will be reflected in increased performance on a future trans-

fer task, and on a future posttest (H3–learning).

A. Population

The CS0 course includes 65 undergraduate students, 50 of

whom consented to our IRB-approved study. In this popula-

tion, 63% of participants self-identified as male, 28.26% as

female, and 8.6% unspecified; 62.5% are 20 years old or youn-

ger, 26.08% are 24 years old or younger, and 8.6% otherwise.

Students self-identified their race/ethnicity with 63.03%

White, 15.2% Asian, 10.8% Black or African American, 4.3%

Native American, and 6.5% Other. While the course was

designed for nonmajors without any programming experience;

some might have had prior programming experience. This

population is similar to most Snap! users, who are typically

students in high school (grades 10–12) and first-year under-

graduates taking an introductory computer science principles

course [2].

B. Procedure

We conducted a controlled study that lasted for three weeks.

Due to the COVID-19 pandemic, this class was held online

through Zoom. On the first day of the CS0 class, one

researcher introduced the study to all students and offered

them the opportunity to consent to participate in the research.

Students were then randomly assigned to the AIF condition or

the Control condition, allowing for between-subjects compari-

son. In the AIF condition, students received feedback through

the AIF system, and in the Control condition, students did not

have access to the AIF system. We note that students in both

groups had detailed assignment instructions with ordered

steps. Additionally, both had equal access to request next-step

hints from Snap!, which suggests a single edit to bring student

TABLE II
SUMMARY OF THE DIFFERENCES BETWEEN VERSIONS OF THE AIF SYSTEMS
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code closer to the correct solution. Hints were already part of

the class to help students when they got stuck, so we do not

analyze its effect in this study. Out of the 50 students, 23 were

assigned to the AIF condition, and 27 were assigned to the

Control condition.

1) Preassessment (HW0): In the first week, students were

assigned HW0, which is a self-paced, independent program-

ming assignment that teaches students the usage of loops [37].

It includes nine subtasks, each requiring 3–10 blocks of code,

with increasing difficulty. We used HW0 as a preassessment4

of students abilities, and Snap! did not provide AIF support to

either condition. We did not perform a traditional pretest,

since this was many students’ first experience with program-

ming, and we did not want to create a harmful expectation that

students should know material that is not yet covered in class.

2) Practice Tasks: We describe three programming tasks,

together called practice tasks, that students completed using

AIF or not, based on their condition assignment, with the

graphical output of each shown in Fig. 4. In week 1, students

had their first in-class programming task called Polygon-

Maker, which asks students to create a procedure with 3

parameters: “n,” “len,’’ “thick,” to draw a polygon with “n”

sides, each with with length “len,” and thickness “thick.” In

week 2, students had two homework tasks: Squiral and Daisy5.

Squiral asks students to create a procedure that takes user

input “r” and draws a spiral square with “r” rotations. Daisy

asks students to create a procedure that draws a daisy with a

user-specified number “n” of overlapping circular petals with

alternate colors. For all these tasks, solutions generally con-

formed to a single high-level strategy, which was reflected in

the AIF system subgoals. This is because the AIF system is

specifically designed to support more straightforward, intro-

ductory-level tasks, with instructions that specify a set of sub-

goals. While within a given subgoal there may be different

possible implementations (e.g., using multiple procedures or

just a single large one); the algorithm generating feedback in

the AIF system uses disjunction features (described in

Section III-B) to detect diverse subgoal implementations.

3) Post Measures: In week 3, students completed a posttest

programming assignment without the AIF system in either

condition, to compare the impact of AIF on learning for a simi-

lar transfer homework task without adaptive immediate feed-

back. This homework 3, Brickwall, asked students to draw a

wall of bricks, with alternate rows of bricks using nested proce-

dures, variables, conditions, and loops. In week 4, the instructor

gave students a postsurvey that collected students’ perceptions

about whether the AIF was helpful and why; followed by a

posttest. The posttest includes seven multiple choice questions

on variables, loops, and conditionals, adapted from the block-

based commutative assessment [46].

C. Measures

In this article, we collected two sources of data, log data and

surveys, which we analyzed to measure the following.

1) Preassessment Scores: We measured students’ scores

in HW0 (our preassessment) across both groups. HW0 con-

sists of nine subtasks, where at least six must be completed to

earn full credit, and students cannot proceed to the next sub-

task without finishing the previous ones. All tasks are automat-

ically assessed as complete or incomplete. We categorized

students’ scores into three categories: we gave students a score

1 if they completed < 6 subtasks, 2 if they completed only 6

subtasks, and 3 otherwise. Since the data on HW0 perfor-

mance are nonnormal, we used a nonparametric Mann–Whit-

ney U test to measure the statistical significance of differences

between students’ scores in the Control and the AIF (i.e., treat-

ment) groups.

2) Performance: We measured the impact of the AIF sys-

tem on students’ performance by comparing students’ scores

(i.e., grades) in all practice tasks across the two treatment con-

ditions. We graded each task, blind to condition, adopting a 4-

item binary rubric for each, adapted from the assignment

instructions. Each rubric item roughly corresponds to an AIF

subgoal, and completing all four rubric items is equivalent to

completing the programming task. One researcher graded

students’ submissions of all programming tasks. To get credit

for a rubric item, a student code has to: 1) be functioning such

that its output matches the output for that particular rubric

item; and 2) use the key programming code blocks required

(i.e., a loop, or an if condition). Students receive 0 in a rubric

item if it was incomplete/missing in their code, and 1 other-

wise, where the grades ranged from 0% (i.e., student failed to

complete all rubric items) to a maximum of 100% (i.e., student

successfully completed all rubric items). To avoid bias, the

researcher compared their grades with the TAs’ grades, and

then discussed/resolved a small number of conflicts. Across

both conditions and all practice tasks, the mean programming

performance was 89% (min = 0%; SD = 22.7%; max = 100%).

Analytical approach: We measured programming perfor-

mance for all practice tasks together to measure the overall

effect of the AIF system on students’ programming perfor-

mance through several weeks. To do so, we used linear

mixed effects models because the data have a nested struc-

ture, where a student’s score in each exercise is treated as

one unit of analysis, accounting for the lack of independence

between observations [47].

3) Completion Rates: We defined the completion rates of

each group (Control or AIF) as the proportion of students who

turned in fully correct, complete code, where a fully complete

Fig. 4. Expected output of Polygon Maker (a), Squiral (b), Daisy (c), and
Brick Wall (d).

4 HW0 was actually due shortly after the first in-lab assignment. We dis-
cuss implications when analyzing the results.

5 We omitted one in-class programming task in week 2 from analysis, due
to technical issues that caused the AIF system to appear in both conditions.

MARWAN et al.: ADAPTIVE IMMEDIATE FEEDBACK FOR BLOCK-BASED PROGRAMMING: DESIGN AND EVALUATION 413

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on February 22,2024 at 14:43:19 UTC from IEEE Xplore.  Restrictions apply. 



submission means students’ score (i.e., grade as described

above) is 100%. Recall that students were given detailed

instructions and animations of the expected output of all the

programming tasks, they have four–six days to complete any

given task, and they also have optional office hours to seek

help from TAs if needed. We expect that all students should

be able to complete all of the practice tasks, if they were to

spend sufficient time and use available help. However, each

task counts for only about 3%–4% of student overall grades,

so perfect performance (i.e., 100% complete) may not be a

goal for students who have many obligations. Therefore this

measure helps to investigate whether the AIF system can

motivate students to correct their code and keep working to

complete it.

To measure task completion, we graded each student sub-

mission as complete when their grade is equal to the maximum

score; i.e., 100%. Across both conditions and assignments, the

mean completion rate was 74% (SD = 44.01%).

Analytical approach: We evaluated students’ correctness

rate on all three practice tasks together to measure the overall

impact of the AIF system on students’ completeness rate for

all three tasks through several weeks of programming. To do

so, we used a linear probability model (LPM) with mixed

effects to predict the likelihood that a student completed a

task (“1” = completed, “0” = not completed). Because data is

binary (i.e., whether a student submitted a complete correct

solution (score = 100%), or not [score < 100%)], we used lin-

ear probability models (LPMs) which are simply linear mixed

effects models that predict binary outcomes [48].

4) Learning: We measured students’ learning in two ways.

First, we measured students’ performance in a later task,

HW3, where students in both conditions did not use the AIF

system and therefore received no feedback. The BrickWall

homework measures how well students learned programming

skills in the practice tasks (with or without AIF), and their

ability to apply them to a new task without additional support.

HW3 shares similar programming concepts with the previous

tasks (e.g., use of procedures, loops, and conditions). We used

students’ performance in BrickWall task as a measure of learn-

ing, since we assumed that students who learn more from the

practice tasks should perform better in this future task.

Because we only have one transfer task, we used a Mann–

Whitney U test to measure the statistical significance of differ-

ences between the scores of students in this transfer task,

across the Control and the AIF groups. We also measured the

completeness rate of the transfer task using Fisher’s exact test

because the data is binary; i.e., whether a student completed

the task or not.

Second, we measured students’ learning by comparing

their posttest scores. The posttest includes seven questions,

and for each question, students got a score of “1” if they

correctly answered this question, or “0” otherwise. As a

result, the maximum score (i.e., 100%) of any student is 7

and the minimum is 0. We used a Mann–Whitney U test to

measure the statistical significance of differences in

students’ (nonnormal) posttest scores across the Control

and the AIF groups.

5) Students’ Perceptions: We conducted thematic analysis

on students’ open-ended responses in the postsurvey, to iden-

tify themes on why the AIF system is more or less helpful.

We followed six steps suggested in the practical guide of per-

forming thematic analysis by Maguire et al. [49]. Two

researchers, independently, 1) got familiar with the data, 2)

generated a total of eight initial codes, 3) and then met to com-

bine initial codes in dominating themes which resulted in five

themes, 4) reviewed all themes together, and then 5) refined

them to focus on only two main themes: mechanisms for

which the AIF system was helpful, and limitations in its

design. Step 6 was the write up of the results, which we pres-

ent in Section V-E.

V. RESULTS AND ANALYSIS

These results are presented in the order of the methods

above. We first investigate the preassessment to ensure the

random assignment to groups was balanced with respect to

performance. We then analyze student log files reflecting their

programming work to explore our hypotheses: H1 on perfor-

mance, H2 on completion, and H3 on learning. We then pres-

ent some case studies to illustrate how the AIF system

impacted these measures, and finally we explore the student

survey results to understand student perceptions of the system.

A Mann–Whitney U test on student scores on HW0 shows

that there was no significant difference (p = 0.9) on the preas-

sessment (described in Section IV-B), between the AIF group

(M = 86.4%), and the Control group (M = 87.7%). This dem-

onstrates that the random group assignment did not result in

different prior programming ability between the groups.

Therefore, any differences between the groups should be due

to the AIF system.

A. Performance Results(H1-Performance)

To measure performance, we compared scores of students

who attempted the practice tasks. Fig. 5 visualizes boxplots and

averages for each condition’s performance on each task. As

shown in Fig. 5, students using the AIF system have consis-

tently higher practice task scores than that of theControl group.

Fig. 5. Student practice task scores for AIF and control groups.
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We then used a linear mixed-effects model (as in Section IV-

C2), to compare combined performance on the practice tasks

between the AIF group and the Control group. In Table III, we

use condition (AIF = 1, Control = 0) and TaskLevel as indepen-

dent variables in our model to predict students’ performance as

the dependent variable. The “TaskLevel” represents the cate-

gorical order of the programming tasks with two indicator vari-

ables to represent distinct categories [50], where “0,1” is

PolygonMaker, “1,0” is Squiral, and setting both Polygon-

Maker and Squiral to 0 (i.e., “0,0”) is Daisy (therefore, we do

not need a third variable for Daisy). The total number of obser-

vations is 146 instead of 150 (3 tasks * 50 students) since we

excluded four students because of missing data6.

Model A (shown in Table III) does not show a statistically

significant impact of TaskLevel on students’ performance.

However, the model shows that the AIF system significantly

improves students’ performance. As shown in Table III, the

AIF variable has a significant impact on performance (p =

0.025), with the coefficient suggesting that students using the

AIF performed, on average, 7.76% points higher, compared

to the Control students across all three practice tasks. Since

the average grade was 89%, this represents a distinct improve-

ment. These results provide support for H1-performance, as

the AIF system improves students’ performance across the

practice tasks.

B. Completion Rates (H2-Completion)

The improvement in scores with AIF confirms H1, but does

not help us understand how students benefited. We hypothe-

sized that the AIF system would benefit students by encourag-

ing them to persist and helping them to catch mistakes, both of

which would translate into higher task completion rates.

Therefore, we measured students’ willingness and ability to

persist to task completion using the completion rate, i.e., a

binary score of 1 for 100% score and 0 otherwise. Grouping

all the three tasks together, we use a linear probability model

(LPM) with mixed effects to predict the likelihood that a stu-

dent completed a task (“1” = completed, “0” = not completed,

dependent variable), using the student’s treatment condition

and the TaskLevel as predictors (independent variables) as we

described above in Section V-A. As shown in Model B in

Table III, we find no effect of the TaskLevel on students’ like-

lihood of completing a task (p = 0.12, 0.93). However, we

found that the AIF system had a significant effect on comple-

tion rate (p = 0.01), and students using the AIF system were

overall 20% more likely to complete a programming task than

students in the Control group. Looking at each task separately,

we found that a higher number of students in the AIF group

completed each task (91.3%, 95.7%, and 72.7%) than that of

the Control group (74.1%, 57.7%, and 68%) in Polygon

Maker, Squiral, and Daisy tasks, respectively. We see that the

group using the AIF system was consistently more likely to

complete each assignment. These results provide support for

H2-Completion, but also suggest the need for further investi-

gation, as discussed in Section VI.

Posthoc analysis: To understand how the AIF system pro-

moted persistence, we examined students’ progress over time

to investigate if there is a relationship between the amount of

time students spent programming and whether their submis-

sions were complete. We hypothesized that the AIF system

might help students complete the programming tasks correctly

in the following two ways: 1) it might help students better

understand the task objectives and whether/when they have

completed them, leading to fewer incorrect submissions; and

2) it might encourage students to continue working to finish

the programming task rather than giving up, leading to fewer

incomplete submissions. To investigate these two outcomes,

we visualized students’ progress over time. We measured

active time from when students began their first code edit until

they exported their attempt, and excluded any time where stu-

dents spent > 5 min idle (i.e., making no code edits).

Fig. 6 plots the percentage of all students in each group who

had submitted a complete, correct submission (y-axis) as time

progressed (x-axis). Each point represents one student submis-

sion, but only complete submissions (triangles) correspond to

an increase in the y-value. First, in Polygon Maker and Squiral

tasks, we see a gap suggesting that both groups were submitting

code, but AIF group submissions were less likely to have

TABLE III
ESTIMATED COEFFICIENTS (STANDARD ERROR) OF LINEAR PROBABILITY

MODELS (LPM) AND LINEAR MIXED-EFFECTS (LME) MODELS PREDICTING
STUDENTS’ PERFORMANCE (I.E., GRADES) ON PROGRAMMING TASKS
(MODEL A), AND THE LIKELIHOOD THAT A STUDENT COMPLETED

PROGRAMMING TASKS (MODEL B), RESPECTIVELY

6Significant codes (p < ): + = 0.1, * = 0.05, ** = 0.01, *** = 0.001.

Fig. 6. Percent of students who submitted correct code over time in practice
tasks. The triangular points indicate complete submissions, and the circular
points indicate incomplete submissions.

6 Missing data include one student in the Control group who did not
attempt Squiral and three students who did not attempt Daisy (two of them are
in the AIF group, and one in the Control group). We chose to exclude these
students because the programming environment did not impact their score
(i.e., their “0” score).
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errors. Additionally, in Squiral, we see that 22% of students (5/

23) in the AIF group continued to work and submit correct

code, even after all Control group students had submitted (solid

black line), suggesting increased persistence to submit com-

plete code. This is consistent with the fact that students in the

AIF condition spent more time on each task, spending 2, 9, and

4 min more than that spent by the Control group, in Polygon

Maker, Squiral, and Daisy, respectively. These exploratory

results suggest that students in the AIF condition were not nec-

essarily more efficient at solving each problem, but instead,

they may have invested the necessary time, which paid off in

the form of increased task completion rates.

C. Learning Results (H3–Learning)

We hypothesized that students who received adaptive

immediate feedback on their progress and completed more

correct tasks would therefore learn more and perform better

on subsequent programming and assessment tasks. We first

measured learning by investigating student transfer perfor-

mance on HW3 BrickWall, where neither group used the AIF

system nor received hints during programming this task. We

found that students in the AIF group completed 5.13% (M =

91.6%; Med = 100; SD = 14.43) more subgoals than the Con-

trol group (M = 86.54%; Med = 100; SD = 17.65) in Brick-

Wall task. While a Mann-Whitney U Test does not show a

significant difference (p = 0.31), perhaps due to a ceiling effect

(most students performed perfectly in both groups), there was

a medium effect size (Cohen’s d = 0.34)7. We also compared

the proportion of students submitting correct attempts in

BrickWall. We found that 71.43% of the AIF group submitted

correct attempts, which is higher than that submitted by the

Control group (57.7%), but a Fisher’s exact test shows that

this difference was not significant (p = 0.37). It is also worth

noting that the six slowest students to turn in BrickWall were

all in the Control group (22% of the group), taking longer

than 77 min (Fig. 7, solid black line) to submit the assignment,

and only 50% of these (i.e., 3) were fully correct. While we

see from the results that students using the AIF system per-

formed better in the transfer task, and in less time than that of

the Control group, these results provide inconclusive evidence

to support H3-learning, i.e., the AIF system did not signifi-

cantly improve students’ performance in a transfer task.

Our second measure of learning is comparing students’

scores in the posttest (described in Section IV-C4). We found

that 48 students took the posttest; 21 in the AIF group, and

27 in the Control group. On average, we found that the AIF

group solved more questions correctly (M = 89.11%; Med =

85.71%; SD = 10%) than the Control group (M = 83.07%;

Med = 85.71%; SD = 15.87%). A Mann–Whitney U test

showed that this difference was not significant (p = 0.23); but

had a medium effect size (Cohen’s d = 0.44). Taken together,

these results suggest that the AIF system does not harm learn-

ing (i.e., by making the tasks too easy), and may provide a

benefit to learning if a larger study were performed.

D. Case Studies

We provide here two case studies for students Sam and Em

to illustrate how a student can use the AIF system, and reasons

why the AIF system may have increased students’ perfor-

mance and motivation to submit complete programming tasks.

We created these case studies by replaying students’ log data

for students when using the AIF system and students in the

Control group, looking for differences in performance. Case

study Sam, represents a student using the AIF system who

keeps programming when the system tells them their subgoals

are incomplete; however, their code output looks complete.

Case study Em represents a student in the Control group who

submits incomplete code with missing components that never

occurred for students in the AIF group.

1) Case Study Sam: This is a case study of student Sam

who was assigned to the AIF group and submitted a complete

attempt of Squiral task after 19 min of work. This case study

presents how students can use the AIF system, and how it

might have helped them complete a task. Sam started by creat-

ing a custom block named “draw squiral” nested with a move

and turn blocks, where the AIF system showed them 33%,

16%, and 18% increase in objective 1, 2, and 4, respectively.

Sam kept working for three more minutes, running their code

29 times, without notable progress and the system popped up

an encouraging pop up message: “keep going,” Sam then cre-

ated a “length” variable and used it in the move block, and

immediately the system noted they completed subgoal 3. Sam

asked for a hint that suggested using a “change by ” block;

however, Sam used a different block that has a similar color to

the “change” block, and no increase in its corresponding sub-

goal took place. Sam then clicked on objective 1, where the sys-

tem marked it in yellow and presented more descriptive text of

objective 1 (as described in Section III). Sam then double

clicked on objective 3 and marked it as complete, and then

clicked again on objective 1. Afterward, Sam asked for a couple

of hints, and followed them immediately, leading to completion

Fig. 7. Percent of students who submitted code over time in Brick Wall
homework. The triangular points indicate complete submission, and the circu-
lar points indicate incomplete submission.

7 We report statistical tests, along with effect sizes, to provide a complete pic-
ture of the results, and help the reader better interpret the effect of theAIF system.
However, because each condition has a small sample size (i.e., < 30), these tests
are only likely to detect large effects and should be interpreted cautiously.
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of objectives 2 and 4, which the student then marked as com-

plete. The system by default then turned objective 1 to yellow,

as it is the remaining incomplete objective. While Sam’s code

was producing the correct output for Squiral, the code did not

use an input parameter for the number of rotations in the “draw

squiral” custom block. Sam then spent three more minutes to

successfully add the parameter, and the system popped up a

message: “You finished the 4 objectives!.” Finally, Sam ran

their code with several inputs and then submitted their code.

Sam’s log data showed that their code was often able to gen-

erate the correct output, but had missing components needed for

full credit. However, Sam persisted until all the objectives were

complete. This may have been due to the AIF system’s tracking

of Sam’s progress, and presenting how far they had progressed

in each objective. In contrast, in the Control group, we found

that 91% of students who had incomplete code had submitted

code that seemed to generate the correct output but was missing

components of a correct solution. This might be due to their

lack of understanding of some programming concepts, like how

to use function parameters, or students relying on assessing the

output generated by their code. From an instructors’ perspec-

tive, these seem like natural mistakes for novices to make. It is

also worth mentioning that we found no new implementation

strategies in any of the Squiral task’s subgoals used in Sam’s

case study. Overall, Sam’s case study shows how helpful the

AIF is in prompting students to self-assess their code and helps

them determine whether it meets the assignment’s require-

ments; which led them to have higher performance and comple-

tion rates than that of theControl group.

2) Case Study Em: This is a case study of student Em who

was assigned to the Control group, and therefore they did not

use the AIF system. Em spent 31 min actively programming

the Daisy homework, and ended up submitting incomplete

code. At the beginning of solving Daisy, Em started by creat-

ing a procedure to “draw a circle,” and at this moment, if they

had had access to the AIF system, it would have shown that

they completed the objective to “draw a circle.” Em then kept

working �20 min and requested nine hints while trying unsuc-

cessfully to complete the “draw daisy” procedure. Em then

deleted all their correct code, which is a common behavior

among novices when they are uncertain about the correctness

of their code [9]. At this moment, if Em had access to the AIF

system, it would have shown that their progress in one of the

objectives went down to 0%, which might have encouraged

them to restore their deleted code. Em then stopped working

for 2 h, and when they returned, they made a couple of edits

and finally turned in incomplete code as shown in Fig. 8 after

a total of 34 min. If Em had been using the AIF system, they

would have seen that their last edits improved their progress

� 15% and that they were overall 65% close to the correct

solution. In contrast, students using AIF for Daisy spent an

average of 44 min, and every student using AIF achieved at

least 75% progress on this task (as shown in Fig. 5).

These results suggest that providing only hints to students is

not enough; and that hints and AIF feedback have comple-

mentary goals. Our proposed AIF system feedback provides

information about student errors and successes, while hints

only address student uncertainty about what to do next. AIF

feedback is offered continuously in the background, while

hints are provided on demand. AIF feedback is an important

addition to hints because the AIF feedback helps students

resolve uncertainty about whether they are on the right track,

affirming their progress as they work, and giving them positive

feedback. On the other hand, hints focus on what should be

done next. Overall, these results reinforce the finding by

Mitrovic et al. [12] that “a tutoring system that teaches to stu-

dent errors can be improved by adding a capability to teach to

their successes as well.”

E. Student Perceptions

To gain insights into the students’ perspectives on the AIF

system, we examined students’ responses to an open-ended

question. Only 29 students took the optional survey, 20 in the

AIF group and nine in theControl group.We performed thematic

analysis (described in Section IV-C5) to analyze students’

responses in the open-ended question: “how or when were the

objectives’ list with progress bars helpful or less helpful in

Snap?” Our analysis resulted into two main themes:mechanisms

by which the AIF system was helpful, and limitations in its

design, which we report below. Note that when reporting quotes

from students’ responses, we put an anonymous student ID

preceding their quote (e.g., [S1]means student 1).

1) Mechanisms by Which the AIF System was Helpful:

This theme highlights the extent to which students’ responses

align with our second hypothesis (H2-completion) about the

AIF system. Overall, 12 out of 20 students made open-ended

comments about how the AIF system was helpful. Four out of

20 students identified that the system helped them to keep

track of their progress: “[The objective progress bars] let me

know if I’m headed in the right direction or not” [S2]. Another

student stated: “It lets me know what is needed to be done so I

am not lost making mistakes and unnecessary edits” [S4].

Both of these comments show that the AIF system may

reduce students’ uncertainty and improve performance. Other

students (3 out of 20) appreciated the feedback on correctness:

S11 saying “... it helps me see how close I am to...getting the

code right.” These responses align with our hypothesis that

providing students with immediate feedback on their progress

motivates them to persist to completion.

2) Limitations in the AIF Design: Students’ comments also

revealed tradeoffs in the design of adaptive feedback, and ways

the AIF system could have been improved. Five (out of 20)

Fig. 8. Submitted code by student Em and its output on the right.
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students described the progress bars as “not always correct”

[S8], saying “sometimes it gets stuck on 95%” [S10]. Students

likely forgot or failed to understand the provided explanation

that the system progress rates were based on similarity to prior

solutions, and the max was set to 95% to remind them of their

responsibility to self-assess their code before submission.

Another limitation is that the system provides objective labels

that fit the data-driven subgoals; however, as one student

noticed, “the [objectives’] progress bar definition seemed

vague and arbitrary at times [S6]”. These limitations suggest

that students may take the numeric scores and objective

descriptions more literally than intended.

In sum, a majority of the students described the system as

helpful because it helped them keep track of their progress or

validate their code, two important factors that help reduce

uncertainty and provide motivation to persist. However, some

students felt the system did not always match their expecta-

tions. The nature of the automated feedback and the open-

ended programming tasks make perfect, immediate feedback

impossible; however, we are encouraged that this limitation

did not harm students’ system use, performance, or learning.

Furthermore, the system incorporated a visual and numeric

progress assessment, providing a tangible reminder to students

that they should self-assess their progress while programming.

VI. DISCUSSION

Overall, our results provide consistent evidence that our

AIF system benefits students through its formative feedback

that was designed to be corrective, immediate, specific, and

positive. We now discuss each of our hypotheses.

A. H1-Performance—Supported

We found that AIF led to increased overall performance on

tasks, reflected by more assignment objectives completed.

These results show that the AIF system has the potential to

increase students’ grades without giving away any of the solu-

tion code (e.g., like hints may do). This performance increase

is important because in introductory CS courses, students fre-

quently make frequent, negative self-assessments of their pro-

gramming ability that may lead students to leave the field [8].

AIF may help, not only by giving the student a sense of prog-

ress and accomplishment during programming, but also by

securing more positive feedback from instructors when turn-

ing in more correct code. While this work did not measure

students’ affective outcomes, our own prior work suggests

that adaptive immediate feedback can lead to increased inten-

tions to persist in computing [14].

B. H2-Correctness—Supported

Our results suggest that, across tasks, students with AIF

were more likely to turn in fully complete and correct code.

Our case studies, surveys, and log data analyses suggest two

likely mechanisms for this improvement. First, students who

struggle on challenging independent homework tasks some-

times give up, like student Em did, without completing the

task. Those with AIF may have been encouraged by the

increasing progress bars and positive pop-up messages that

show students they are “headed in the right direction [S2]”. As

shown in Fig. 6, students in the AIF group continued to work

on the Squiral and Daisy homeworks, turning in correct code

long after the Control students. Since the code was ultimately

correct, it suggests that this extra time was well spent. Second,

some students may have been unaware that their code failed to

meet assignment objectives, as we discussed in Em’s case

study, leading them to turn in erroneous code. The AIF sys-

tem’s automated assessment can highlight this incorrect code,

giving students the opportunity to fix it. Fig. 6 shows that stu-

dents do fix these errors, as evidenced by the gap between the

percentage of students turning in fully correct code on the

Polygon Maker and Squiral tasks over time. In both cases, our

results show not only that the AIF system can encourage stu-

dents to address these errors, but that students are often capa-

ble of fixing them, as long as they are made aware of them.

While our data cannot show whether students gave up inten-

tionally or missed errors in their code, or how precisely the AIF

changed their behavior, our hypothesis aligns with prior research

and theory on the efficacy of formative feedback. Using the AIF

system, students received immediate specific feedback, then cor-

rected errors and turned in more complete code, which are

behaviors that align both with instructor desires, and learning

theories to improve learners’ outcomes [21]. We also note that

even in the rare occasions when the system’s feedback is inaccu-

rate, as noted in Section V-E, prompting students to engage in

self-regulated learning skills, such as progress monitoring and

self-assessment, can improve students’ learning [43].

There are two explanations that may have led to improved

completion (more scores of 100%) and correctness (i.e., higher

scores) with AIF. First, the AIF system simplifies the learning

process by dividing the task into a set of subgoals, and pro-

vides corrective immediate feedback on each. This task break-

down might have reduced students’ cognitive load, and based

on cognitive load theory, this could lead to an improvement in

their scores [13]. Another interpretation is that, because stu-

dents can see a change in their progress when they add or

delete correct blocks, they might be more cautious not to

delete correct code, which is an influence on students’

“behavior,” leading to higher scores. This was also suggested

by students’ responses in the postsurvey when one student

said: “It lets me know what is needed to be done so I am not

lost making mistakes and unnecessary edits [S4].”

C. H3-Learning—Inconclusive

We found suggestive evidence that students with AIF per-

formed better on a subsequent transfer task without hints or

feedback, as well as on a posttest. However, neither of these

effects were significant. It is possible that our sample size of

50 consenting students was too small to detect this difference.

It is also possible that the primary benefit of AIF is on the

task where it is given, not on learning. However, we argue

that if assignments are well-designed, encouraging students to

complete more of the task objectives should reasonably have
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some benefit to learning, as students who persist are exposed

to more learning content.

D. Limitations

This article has three limitations: 1) survey data; 2) missing data;

and 3) possible confounds. First, only 20 out of 23 students in the

AIF group took the postsurvey and therefore our qualitative results

may not be representative of all students in the AIF group.

Second, while we suggest that the one mechanism by which

the AIF system improves student performance and learning

is by creating opportunities for positive self-assessment, we

did not use surveys to measure self-assessment. This was due

to some technical issues with the deployment of the surveys.

However, students’ responses in the postsurvey indicate that

the AIF system may have promoted student self-assessment

during programming, and our results in prior work show that

such formative feedback improved students’ intentions to

persist in CS [14]. We plan to measure self-assessment and

self-efficacy in future work.

While we argue that our results are largely consistent with

our hypothesis, there are other possible confounds. Students in

the AIF group may have had more prior programming experi-

ence, though we found no evidence of this in our preassess-

ment task. We also note that all students had access to

automated hints, and hint usage may have affected our results.

However, we found no large or significant differences in the

number of hints requested across groups. It is possible that the

hint complements the AIF, increasing its effectiveness, but it

is also possible that the additional help in both groups actually

diminished our ability to detect differences between the

groups, e.g., by creating a ceiling effect on assignment perfor-

mance. Lastly, we note that increased student persistence to

submit complete solutions has a tradeoff that it requires addi-

tional student time, which students may not appreciate. We

did find that the AIF group spent somewhat more time on

homeworks (though the difference was not significant), but

this also seemed to pay off in increased performance.

VII. CONCLUSION

The AIF 3.0 system uses a hybrid data-driven model to

generate automated formative feedback on assignment sub-

goals, during programming. Its adaptive progress feedback

was designed to align with theories about effective feedback

for learning. In this article, we evaluated the AIF 3.0 system

over three weeks and multiple assignments in an authentic

computer science nonmajors classroom setting. Our results

showed that the AIF system improved student scores across

all programming tasks, and increased the number of students’

code submissions that were completely correct. Our qualita-

tive analysis showed that students perceived the system to be

helpful because it let them track their progress and prevented

them from wasting time on unnecessary edits. Our case studies

demonstrated how a student without adaptive feedback may

give up and submit incomplete tasks; and a contrasting case

that shows how the AIF system can resolve this behavior. In

future work, we will continue to refine our feedback and inter-

faces, and use surveys to measure the impact of the AIF sys-

tem on students’ self-assessment and self-efficacy.
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