2019 IEEE Blocks and Beyond Workshop

Resource Rush:
Towards An Open-Ended Programming Game

Nicholas Lytle, Jennifer Echavarria, Joshua Sosa, Thomas W. Price
Department of Computer Science
North Carolina State University
Raleigh, NC United States
{nalytle,jechava,jsosa,twprice } @ncsu.edu

Abstract—Programming games provide players opportunities
to practice and learn the fundamentals of coding in engaging
ways. Many games have players program in block-based lan-
guages similar to environments like Scratch and Snap! as a means
to scaffold student learning and reduce syntax errors. Block-
based environments (BBEs) have been praised for their open-
ended, constructionist designs allowing students to develop what
they wish, express themselves, and explore the possibilities of the
system. However, programming games tend to be more linear,
usually designed as a fixed series of puzzles. We present Resource
Rush, a game designed to resemble BBEs and present users with
a game world that allows users to learn the fundamentals of
programming in an open-ended game environment.

I. INTRODUCTION/RELATED WORK

There are currently dozens of programming games [6]
[5] and many share key design features. One is the use of
block-based programming languages as the means to program.
Similar to block-based programming environments (BBEs)
like Scratch [3] and Snap! [2], these block-based languages
help scaffold students learning to program by easing the
process of constructing code compared to text-based languages
[16]. Many of these games fall into the puzzle genre where
the game is set up as a series of increasingly difficult, self-
contained levels that tasks players to solve a challenge by
programming an agent. While the challenges sometimes can
be completed in a branching order (ala Human Resource
Machine), many have them in a fixed order. In Light-Bot
[12], Program Your Robot [4] and BOTS [7], the challenge for
each level involves navigating a robot through a maze through
programmed commands. These are examples of games that
Vahldick et al. cite as being “Logo-Like”, taking cues from
the famous constructionist learning environment, Logo [14].
Human Resource Machine [9] and 7 Billion Humans [10], both
commercial programming games developed by the Tomorrow
Corporation, tasks players to complete each level by having
certain end conditions in the world met (e.g. variable be a
certain value at the end of the run). For a completely novel
setup, No Bug’s Snack Bar, tasks users to program a chef
agent that creates food and serves customers [13].

Block-based programming languages are common not just
in these games, but also within BBEs. When block-based
languages are used in BBEs, they are usually done to allow
for creative, open-ended programming of multiple sprites or
agents. Unlike BBEs, block-based programming games tend

978-1-7281-4849-6/19/$31.00 ©2019 IEEE

to be puzzle games controlling only one agent, are not open-
ended and do not allow for creative, self-guided exploration.
We feel there are extremely powerful affordances found in
these BBEs that are missing in block-based games; we detail
some of these below.

First, BBEs like Scratch and Snap! work by having a
wide array of blocks (usually dozens) for users to use and
experiment with, as opposed to the limited (usually less
than a dozen) number of commands used in programming
games. In addition, all of these blocks are available to the
user from the start in a BBE, but not so in popular games
where they must be unlocked through completing more levels.
These blocks can be used in BBEs to control multiple agents
(sprites) simultaneously, creating complex interactions. While
some programming games like 7 Billion Humans allow users
to program multiple agents, each agent must run the same
developed script, unlike in Scratch or Snap!, where Sprites can
have different scripts. In addition, the programming windows
in BBEs are set up such that multiple scripts and behaviors
can be developed for a single sprite. No Bugs Snack Bar is the
only game described above that allows this as well. Further,
in BBEs, custom blocks and procedures can be created and
used to create more complex programs, but this is not found
in most games, with only BOTS and Light-Bot allowing for
the creation of a limited number of procedures.

Most importantly, BBEs like Scratch were designed to be
constructionist learning environments centered around the idea
that students learn by creating, and can guide themselves
through the learning process by engaging in open-ended
projects. This involves students being able to create their own
computational artifacts (and share them with others around
the world) given their own design ideas. In general, students
in BBEs can engage in open-ended programming, creating
challenges for themselves as well as having the freedom to
tackle challenges in any manner they desire. We find this to
be the most important feature of BBEs that are usually absent
in programming games. By nature of the puzzle design, these
games are not open-ended, instead explicitly giving tasks one
after another for students to complete. Ensuring that a game
still has this feature of BBEs was the main push for our game,
Resource Rush.

91

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 02,2021 at 20:43:09 UTC from IEEE Xplore. Restrictions apply.

II. RESOURCE RUSH: CURRENT AND FUTURE WORK

Resource Rush is a web game written in Blockly [8]
designed to be an open-ended programming game for all ages.
In the game, players take control of multiple agents in a farm-
style setting similar to that of StarDew Valley [11]. Players
can engage in multiple activities to build up their farm/land as
they wish. While we only have farming and hunting mechanics
developed as of now, we intend to expand the number of
things players can mechanically do in the game (e.g. fish,
cook, etc.) and build a game structure that allows for the easy
extension of new activities. Each of these activities in the game
have associated blocks related to completing these actions (e.g.
‘harvest crop’). Like most BBEs, Resource Rush also has other
blocks related to completing tasks in general (e.g., control
structures) that can be accessed from the palette. Players can
build programs to complete activities by snapping together
blocks of code. Unlike most block-based programming games
(but like BBEs like Scratch), players can have multiple scripts
developed for an agent and individually select ones to run
as well as save scripts to use later. We eventually will allow
support for the development of custom functions that will
allow players to complete increasingly complex tasks.

The game is designed to be open-ended in that students
will not be presented a series of fixed levels. Instead, players
will be given high-level goals or missions and will be tasked
to complete these missions in the way they see fit. For
example, if a student is tasked with ‘Plant 100 seeds’, they
can choose to plant a harvest on a 20x1 plot 5 times or elect
to make a giant 10x10 structure and only plant and harvest
once. Other game missions like ‘Collect 500 coins’ will
allow them to choose which of the activities that give money
(farming, hunting animals etc.) they would rather build code
for to complete. Like other games in the genre, completing
missions will allow players to unlock additional features or
cosmetic items, a common mechanic to keep people engaged
in open-ended games. Though this is a game designed to teach
programming, any of the agents the player is in control of
can complete missions without programming using keyboard
input. However, if players elect to program their agents using
the block-based interface, the agents will enter Rush mode and
complete their actions with a speed multiplier. This was done
to encourage players to choose to program and illustrate how
programming can speed up manual tasks.

Though we are still in the prototype stages, we believe
that several new research directions open up thanks to design
choices we have made creating an open-ended programming
game. First, as our game does not force players to program
at any point, we are able to investigate contexts in which
players elect to code or do not, as well as research means
of motivating code-averse players to willingly try. This might
include structuring missions in such a way that it would be
difficult to do so manually but easier programmatically, or give
special motivating bonuses (like extra money or rewards) to
those who complete missions through code.

Second, as ours is an open-ended game with no end, we

92

Fig. 1.
planting crops (left) to be stored in the barn (top right). The player is doing
this programmatically as the character is in ‘Rush’ mode (yellow sparkles).

A screenshot from Resource Rush. A player character (center) is

will need a means of having enough missions for players
to always be engaged with. This will most likely mean that
we will have to procedurally generate missions, which has
been used successfully as means of extending gameplay in
Serious games [17]. Though there have been games so far
that have procedurally generated content, our context opens up
research directions in how to create appropriate missions for
players in open-ended environments given their current play
trajectory. This will include understanding how to generate
appropriately skilled missions given a student’s current level
of programming prowess, potentially altering the design of the
mission (i.e., providing starter code) to better scaffold novice
players. In addition to generating the correct content, we will
also have to investigate how to generate motivating educational
contexts by creating missions that actually engage students
in playing the game the way they want to play it while still
learning to code.

While far off in development, we believe we can further
extend this game by making it multiplayer. In-game, this
might be represented as certain missions that players can
work on together by visiting each others’ worlds. This opens
up tremendous opportunities in investigate social learning
contexts in block-based environments. Further, though there
has been recent work in systems like NetsBlox [18] that inves-
tigate collaborative block-based programming, this direction
could unlock additional avenues of research in how students
learn and collaborate in block-based environments as well as
how students collaborate and learn in an educational game.
Finally, though some BBEs like Snap! are open-source, most
block-based games we know of are not. We are making a
commitment now to ensure Resource Rush be open-source
as we are hoping that this might encourage players who
are engaged in learning to program through the game to
actively practice their skills by developing for the game. This
progression a player to developer might undergo is the very
sort of agency we want to foster. Hopefully, by both playing
and developing for Resource Rush, our attempt at an open-
ended, ever-expanding programming game, we can truly show
players the power of programming.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 02,2021 at 20:43:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Nicholas Lytle, Veronica Catete, Danielle Boulden, Yihuan Dong,
Jennifer Houchins, Alexandra Milliken, Amy Isvik, Dolly Bounajim,
Eric Wiebe, and Tiffany Barnes. “Use, Modify, Create: Comparing
Computational Thinking Lesson Progressions for STEM Classes”. In
Proceedings of the 24th Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE 19) Aberdeen, United
Kingdom.

[2] Brian Harvey, Dan Garcia, Josh Paley and Luke Segars. “Snap! :(build
your own blocks).” Proceedings of the 43rd ACM technical symposium
on Computer Science Education. ACM, 2012.

[3] Mitchel Resnick John Maloney Andrs Monroy-Hernndez Natalie Rusk
Evelyn Eastmond Karen Brennan Amon Millner Eric Rosenbaum Jay
Silver Brian Silverman Yasmin Kafai. “Scratch: Programming for all.”
Commun. Acm 52.11 (2009): 60-67.

[4] Kazimoglu, Cagin, Mary Kiernan, Liz Bacon, and Lachlan Mackinnon.
“A serious game for developing computational thinking and learning
introductory computer programming.” Procedia-Social and Behavioral
Sciences 47 (2012): 1991-1999.

[5] Michael Miljanovic, and Jeremy S. Bradbury. “A review of serious
games for programming.” Joint International Conference on Serious
Games. Springer, Cham, 2018.

[6] Adilson Vahldick, Antonio José Mendes, and Maria José Marcelino. “A
review of games designed to improve introductory computer program-
ming competencies.” 2014 IEEE frontiers in education conference (FIE)
proceedings. IEEE, 2014.

[71 Rui Zhi, Nicholas Lytle, and Thomas W. Price. “Exploring Instructional
Support Design in an Educational Game for K-12 Computing Educa-
tion.” Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 2018.

[8] Blockly — Google Developers.
https://developers.google.com/blockly/.

[9] Tomorrow Corporation. Human Resource Machine
https://tomorrowcorporation.com/humanresourcemachine

[10] 7 Billion Humans — Tomorrow Corporation.
https://tomorrowcorporation.com/7billionhumans

[11] Stardew Valley — Eric Barone.
https://www.stardewvalley.net/

[12] Lindsey Ann Gouws, Karen Bradshaw, and Peter Wentworth. “Computa-
tional thinking in educational activities: an evaluation of the educational
game Light-Bot.” Proceedings of the 18th ACM conference on Innova-
tion and technology in computer science education. ACM, 2013.

[13] Adilson Vahldick, Antnio José Mendes, and Maria José Marcelino.
“Dynamic Difficulty Adjustment through a Learning Analytics Model
in a Casual Serious Game for Computer Programming Learning.” EAI
Endorsed Trans. Serious Games 4.13 (2017).

[14] Mitchel Resnick, Stephen Ocko, and Seymour Papert. “LEGO, Logo,
and design.” Children’s Environments Quarterly (1988): 14-18.

[15] Idit Harel and Seymour Papert. “Constructionism”. Ablex Publishing,
1991.

[16] Thomas Price and Tiffany Barnes. (2015, July). “Comparing textual and
block interfaces in a novice programming environment”. In Proceedings
of the eleventh annual international conference on international comput-
ing education research (pp. 91-99). ACM.

[17] Yetunde Folajimi, Britton Horn, Jacqueline Barnes, Amy Hoover, Gillian
Smith, and Casper Harteveld. “A Cross-Cultural Evaluation of a Com-
puter Science Teaching Game”. Proceedings of Games+ Learning+
Society. ETC Press, Pittsburgh, PA.

[18] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti,
Alexia Carrillo, Stephanie L. Weeden-Wright, Chris Vanags, Joshua
D. Swartz, and Melvin Lu. “A visual programming environment for
learning distributed programming”. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (pp.
81-86). ACM.

93

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 02,2021 at 20:43:09 UTC from IEEE Xplore. Restrictions apply.

