
Case Studies on the use of Storyboarding by Novice Programmers
Ally Limke

Alexandra Milliken
anlimke@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Veronica Cateté
Isabella Gransbury

Amy Isvik
North Carolina State University

Raleigh, NC, USA

Thomas Price
Chris Martens
Tiffany Barnes

tmbarnes@ncsu.edu
North Carolina State University

Raleigh, NC, USA

ABSTRACT
Our researchers seek to support students in building block-based
programming projects that are motivating and engaging as well
as valuable practice in learning to code. A difficult part of the
programming process is planning. In this research, we explore how
novice programmers used a custom-built planning tool, PlanIT,
contrasted against how they used storyboarding when planning
games. In a three-part study, we engaged novices in planning and
programming three games: a maze game, a break-out game, and a
mashup of the two. In a set of five case studies, we show how five
pairs of students approached the planning and programming of
these three games, illustrating that students felt more creative when
storyboarding rather than using PlanIT. We end with a discussion
on the implications of this work for designing supports for novices
to plan open-ended projects.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Human-centered computing → User studies.

KEYWORDS
block-based programs, open-ended projects, planning, storyboards

ACM Reference Format:
Ally Limke, Alexandra Milliken, Veronica Cateté, Isabella Gransbury, Amy
Isvik, Thomas Price, Chris Martens, and Tiffany Barnes. 2022. Case Studies
on the use of Storyboarding by Novice Programmers. In Proceedings of the
27th ACM Conference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8–13, 2022, Dublin, Ireland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524749

1 INTRODUCTION
Curricula using block-based programming languages like Snap!
[10] have engaged students in open-ended, creative programming
[6, 8]. These approaches to teaching can help broaden participation
in computing by connecting material with students’ personal inter-
ests [14, 19]. While open-ended programming has many benefits,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524749

prior work shows students struggle with aspects of the design pro-
cess like communicating ideas and articulating algorithms [17]. As
open-ended programming can motivate students to participate in
computing, it is important to support students in their designs.

Existing design tools are primarily text based [1, 11, 13]. In vi-
sual, interactive block-based environments, it may be helpful for
students to create visual compositions using the graphics from their
programs. Therefore, we introduce simple digital storyboarding as a
game design technique for block-based programming. We engaged
novices in planning and programming three games: a maze, break-
out, and a mash-up of the two. Through case studies, we show how
pairs of students planned and programmed these games, finding
five planning themes: Mechanic Illustrators, Idea Explorers, Confi-
dence Builders, Artists, and Confident Programmers. We focused on
answering the overarching question: How do novice programmers
perceive the impact of planning using storyboarding or a planning
tool on their experiences making games in a block-based language?
These case studies provide insights into how different planning
tools may engage students with varying levels of confidence and
experience to make complex, interactive programs.

2 RELATEDWORKS
Prior work shows that students struggle with ideating, creating
prototypes, and articulating algorithms for open-ended projects
[17]. Additionally, students have trouble describing original game
mechanics [2]. Failure to properly plan for programming tasks may
result in poorly-organized code [12] and keep students from achiev-
ing their goals. Many students who gain programming proficiency
in block programming have duplicate code and long scripts [16].

Because planning helps students program open-ended tasks,
multiple tools have been developed to support the process. Simple
paper tools for game design in block-based languages include De-
sign Notebooks [17] and mechanic planning [2]. Other digital tools
have been developed and integrated into programming environ-
ments, like a Java planning tutor [11], a UML class diagram plugin
for Eclipse [1], and PlanIT for Snap! [13].

Whereas the tools above are primarily text-based, storyboarding
is a visual approach that remains largely unexplored as a design tool
for block-based games. Storyboarding is a common technique used
by designers and HCI specialists to illustrate system interfaces [18].
Storyboarding has been used by K-12 students for designing video
games [4, 17] and games for augmented reality storytelling [7].
Paper storyboards were used to help middle school students plan
for animations in Scratch [5, 15]. However, none of these studies
analyze how students used the storyboards or detail their experi-
ences. This is an pertinent gap in the literature as it is important

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

318

https://doi.org/10.1145/3502718.3524749
https://doi.org/10.1145/3502718.3524749

to know if storyboarding is an effective tool for planning and how
storyboarding compares to existing planning tools.

3 PLANIT & STORYBOARDING TEMPLATES
PlanIT is a text-based planning tool integrated into the Snap! pro-
gramming environment[13] that allows students to add descriptions
to their games and define a To Do list. PlanIT also supports students
in defining events occurring between their sprites and variables.
The planned sprites and variables are automatically added to Snap!
so that students make progress on their final programs as they plan.

We provided storyboard templates in Google Slides, allowing for
concurrent editing. Each template included a space to construct a
scene, add a title, and write a description. There were three tem-
plates: a title slide, a single scene (see Figure 2), and a “When/Then”
slide which included two scenes. The single scene slide also in-
cluded a space labeled “Trigger” to help students think about what
causes a scene to take place.

4 CONTEXT
We conducted a study with 36 high school students during week
five of a six week virtual summer computing internship led by a
graduate student and faculty member at a large public university [3].
Students were recruited from across the country and had a variety
of school backgrounds. During the internship, students acted as
code support for K-12 teachers creating block-based lessons for their
classroom and were familiar with coding in block-based languages
before the study. Of the 36 interns, the demographics for the 10
consenting students that we focus on are presented in Table 1 with
a self-assessment of their programming confidence on a Likert scale:
no programming skills (1), little (2), some (3), and very strong (4).
All student names have been replaced with pseudonyms.

5 METHODS
5.1 Research Questions
To better understand how storyboarding helps students plan novel
programs, our research questions are: RQ 1: How do novice pro-
grammers perceive the impact of storyboarding on their experi-
ences planning and programming games in a block-based language?
RQ 2:How do novice programmers perceive their experiences with
storyboards in comparison to the planning tool, PlanIT?

We expect students will find the storyboarding templates helpful
for collaboration as they allow for visual communication of ideas.
We predict students will structure their planning time by first using
the storyboarding templates and then PlanIT. Storyboarding allows
students to construct general game ideas, whereas PlanIT assists
students in thinking about code mechanics. Finally, we expect stu-
dents will perceive the storyboarding templates to support their
creativity through allowing students to iterate on their designs and
create programs that are meaningful to them.

5.2 Study Design
As storyboarding is often used for communication, we assigned
students to pairs. All students participated in a PlanIT tutorial. The
study was conducted in three sessions over two days. On Day 1,
students engaged in one session. On Day 2, students participated in

two separate sessions. Each session had the following progression:
Students were introduced to the game genre and explored example
games in the Scratch library. (15 min) Students planned for a game
using assigned planning tools in Zoom breakout rooms. (30 min)
Students pair programmed the games in Snap!. (90 min) Students
participated in four-person focus groups where they presented their
game and answered questions about their experiences planning
and programming. (15 min) Students took a post-survey to further
describe their experiences with the planning tools and experiences
pair programming. (10 min) We collected students’ code traces,
coding artifacts, post-surveys, and focus group transcripts.

Sincewe are interested in how PlanIT compares to storyboarding,
we partitioned students into two conditions: Students in Condition
A could use both PlanIT and storyboarding slides for planning,
while the students in Condition B could only use PlanIT. Students
were only introduced to the tools they were allowed to use.

Each session featured a different game genre: a maze game, a
breakout game, and a mashup of their first two games. We included
the mashup style game to explore students’ experiences represent-
ing novel ideas in addition to planning for the existing games. Each
planning and programming period was self-directed. For story-
boarding, we instructed students to duplicate slides, delete slides,
and use the templates in ways that fit their needs. We provided
pairs in both conditions with sample sprites which were intended
to give them a starting point and prevent them from spending their
planning time searching for sprites online.

6 CASE STUDIES
The following case studies detail the participants’ planning and
programming journeys. We focus our case studies on groups in
Condition A to illustrate student preference and the affordances
of each tool. We conclude with one case study from Condition B
to illustrate how planning in PlanIT contrasts to planning with
both tools. While all students in Condition A participated in all
sessions, many participants in Condition Bmissed some planning or
programming sessions. The case study group from Condition B we

Figure 1: PlanIT, Planning Tool

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

319

Table 1: Participants’ Demographic Data

Team Group Gender Ethnicity Programming confidence
Duck & Fish A F, F Asian / Pacific Islander, Black 3, 4
Cat & Wasp A F, M Southeast Asian / Indian, Hispanic / Latin(x) 4, 4
Bat & Koala A F, F Southeast Asian / Indian, Asian / Pacific Islander 2, 3
Deer & Zebra A F, F Black, Black 3, 3
Octopus & Robin B F, F White, Southeast Asian / Indian 3, 4

chose to focus on attended all sessions. Those in Condition B who
were not discussed in our case studies have similar programming
experiences and demographics as others in the study. We use each
group’s code traces, survey responses, planning artifacts, coding
artifacts, and focus group transcripts to construct each case study.

To provide further context to the case studies, two of the authors
hand-analyzed the plans and final code to determine the number of
features students planned for and how many they implemented in
Table 2. When calculating the total, only features that were beyond
the scope of the game instructions were counted (e.g. levels, GUI).

Table 2: Counts of features programmed and planned.

Team Group Features
planned

Features
programmed

G1 G2 G3 G1 G2 G3
Duck & Fish A 9 5 7 9 4 3
Cat & Wasp A 4 2 7 6 8 10
Bat & Koala A 5 0 8 5 0 8
Deer & Zebra A 9 1 10 8 3 16
Octopus & Robin B 5 1 5 8 4 7

6.1 Duck & Fish: Mechanic Illustrators
Duck and Fish, the Mechanic Illustrators, show how storyboards
can aid in collaboration and in ideating game mechanics. This case
suggests that students find storyboarding of greater value when
they are planning for more complex concepts.

Maze Duck and Fish planned thoroughly for their maze game,
constructing seven scenes, writing pseudocode, and defining a win
condition. Whereas some groups focused on creating a unique
theme for their game, this group appreciated that the slide deck pro-
vided sprite costumes so they could “focus on building [their] ideas”
for their game mechanics. Fish arrived late to the planning session.
In the post-session interview, both group members emphasized
that the storyboards were “really helpful to group programming,”
allowing Fish to quickly understand Duck’s plans.

Breakout This group created detailed plans for a basic breakout
game with the addition of a “lives” variable. The storyboards were
sequential with starting and ending slides, arrows for denoting
movement, and descriptions of conditionals and variables. After
session one, Duck shared that storyboarding felt unhelpful “for cod-
ing activities that can be finished in less than two hours.” However,
Duck’s perspective changed after programming the breakout game.
Duck shared that storyboarding helped them “compartmentalize
[their] thinking” and “visualize the if/then conditions”. It may be

that for games which require more advanced Snap! concepts (e.g.
cloning), storyboarding feels more worthwhile.

Figure 2: Duck & Fish’s Mashup Slide

Mashup This group used their planning time productively fo-
cusing only on the parts of their mashup game they had not pro-
grammed in past sessions. Rather than rebuilding their storyboards,
this group copied and pasted their slides from Breakout and added
three slides to describe a new feature for their game, including the
slide in Figure 2. Similar to Cat andWasp, who used the storyboards
to experiment with ideas rather than making detailed plans, this
group only planned for what would be useful for them: the new
feature. This indicates that storyboards are useful as a tool to ideate
new mechanics for their programs rather than serve as busy work.
Duck and Fish did not use PlanIT in the planning sessions. Duck
shared that, after completing the storyboards, the group “found
the PlanIT feature unnecessary” and “redundant” with their sto-
ryboarding plans. This indicates that this group may have found
value in using PlanIT if the storyboarding slides were unavailable,
and simply preferred to use the storyboarding slides.

6.2 Cat & Wasp: Idea Explorers
Cat and Wasp, the Idea Explorers, illustrate that storyboards allow
students to explore game ideas at a low time-cost. They also reveal
that while storyboarding is the preferred planning tool among the
groups, PlanITmay be better at supporting textual planning. Finally,
this case reveals that students with more programming experience
may find the storyboards unhelpful for simple games.

Maze Cat and Wasp chose to plan only with storyboards. While
the group’s maze plans were thorough, Wasp shared that they were
not helpful, but for games with more mechanics, it would be useful
to “be able to refer back” them. Wasp and Cat had the highest
confidence programming in Snap! compared to others in Condition

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

320

A. This may explain why Wasp felt the storyboards were unhelpful
when the other groups found them both helpful and enjoyable.

Breakout Cat and Wasp used the storyboards as an exploratory
tool to plan for their soccer themed breakout game. Wasp empha-
sized that the storyboards let their team explore ideas without
investing time into programming them. These storyboards were
less detailed, only describing the interaction between the ball and
bricks. Although their storyboards looked incomplete, it seems the
group only used the storyboards for parts of the program that they
were unsure about, which is a productive use of the planning time.
The group’s final game had more features than they had planned for.
Wasp explained that the group did not use PlanIT because they “had
everything [they] needed already planned from storyboarding.”

Mashup The group used both PlanIT and the storyboards to
plan for their game. PlanIT was used to describe user controls
and game rules, whereas the storyboards had little text and were
mostly visual. The group may have used both tools because the
mashup game required them to think of an original idea, which
they described was “really hard”.

6.3 Bat & Koala: Confidence Builders
Bat and Koala, the Confidence Builders, began the study unsure of
their programming abilities. Bat was the only student to report
having very little programming skills despite having experience in
multiple languages. Koala was the only student that reported feeling
unconfident in their ability to program an existing game in Snap!.
This case illustrates that even students who lack confidence and
struggle with storyboarding may feel proud of their storyboards
and enjoy storyboarding. This case describes how storyboarding
can build students’ confidence in their ability to program games.

Maze Koala and Bat struggled with representing certain me-
chanics on their storyboards. For example, Bat shared that “making
clear how the door would open” was the hardest part of planning
because it could be interpreted differently than their intent. After
each session, this group shared that they struggled to represent
their intent visually. Providing students with examples of other
storyboards may help them understand how others represented
similar mechanics. Although Bat and Koala programmed a com-
plete game, the group shared that they were most proud of creating
their storyboards. Because planning felt difficult for this group,
overcoming the challenge may have felt more rewarding to them
than programming the game.

Breakout This group’s lack of confidence is reflected in the
language used in their breakout storyboards. They used terms that
expressed uncertainty in their design or programming abilities;
for instance,“a variable that could change is the number of bricks
that disappeared”. This uncertainty may have been a result of the
increased difficulty of the breakout game and may be why this
sentiment did not appear in their maze slides. Bat and Koala’s
hesitancy is also reflected in their plans for the breakout game.
They did not plan or program any extra features.

Mashup This group expressed worry in their ability to com-
plete the mashup task. Bat said that their first reaction was “What?
How can we combine both of these to make something in the time
that we have? [...] We weren’t sure what to do.” However, Bat and
Koala shared that the process of storyboarding allowed them to

experiment with ideas for their game and create an implementable
plan. In fact, Bat and Koala implemented all the features that they
planned for in their mashup. In the post-survey, we saw that Bat’s
programming self-assessment increased. This may be a result of
successfully programming a game that once seemed daunting.

Koala’s confidence in their ability to create an existing game in
Snap! increased in the post-survey. In session one, Bat and Koala
used PlanIT to describe their game and add sprites. However, in their
mashup Bat and Koala did not use PlanIT for any aspect of planning.
As their confidence in their programming skills increased, they
likely felt less need to create detailed plans. Based on prior research,
undergraduate students reported feeling “bad at programming”
if they needed to plan before writing code [9]. Therefore, if the
students felt more confident in their programming abilities, they
may have found it unnecessary to use multiple planning techniques.

6.4 Deer & Zebra: The Artists
Deer and Zebra, the Artists, reveal that storyboarding can help in-
spire students and make them feel supported creatively by allowing
them to quickly express their ideas. However, this case also illus-
trates that the visual aspect of storyboarding may distract students
from planning more complex mechanics, instead encouraging them
to focus on finding interesting graphics.

Maze Deer and Zebra chose not to use PlanIT and planned only
using the storyboarding templates. This is similar to other groups
in Condition A who also did not use PlanIT for at least one of their
games indicating a preference for storyboarding over PlanIT.

After completing their game, Deer and Zebra shared that story-
boarding gave them inspiration and removed the blank page syn-
drome that they often feel when starting a project in Snap!. Deer
and Zebra shared that they felt most creative while storyboarding
rather than when they were programming. This is interesting as
much of the text that accompanied their storyboard visualizations
were written with Snap! coding terms like “Broadcast” and condi-
tional statements showing that storyboards allow students to feel
creative while using their computational thinking skills.

Although the group enjoyed and felt they benefited from sto-
ryboarding, they also expressed struggling with the process. The
group shared that they did not know how to organize their slides
and had trouble determining “what game mechanics are one or two
different scenes”. This focus on communicating mechanics rather
than a sequential story is reflected in the group’s storyboards. For
all three of their games, the storyboards were not used sequentially,
but instead to isolate a mechanic in their game.

Breakout Deer and Zebra’s breakout game had fewer features
than our instructions suggested. While their game mechanics were
simple, their visuals were not, creating a unique candy theme. Zebra
shared that they most enjoyed adding the sprites to the storyboards
and “making it look nice.” Thus, students in some cases may be
focused on using the storyboards to plan for a game theme rather
than ideating ambitious game mechanics that challenge them. The
lack of game mechanics in their plans is reflected in their final code.
The group’s breakout game contained only 52 blocks, which was
the second-least number of blocks used by any group.

Mashup Unlike their breakout game, Deer and Zebra’s mashup
was very ambitious, incorporating collectible items and a shooting

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

321

mechanism into their maze. The challenge of creating an original
game may have taken the group’s focus away from planning for
visual attributes and instead shifted it toward game function.

The students programmed more than they planned for, imple-
menting six additional features like a timer and an ending message.
The success this group experienced, when they did not spend their
time searching for sprite costumes, reveals a need for a limit on the
time a group may spend looking for sprites or supports to make the
process faster. A themed sprite library with helpful search features
may resolve the issue in future storyboard tools. We can not dismiss
interest in searching for sprite images as unproductive as it may be
that this group’s excitement about their graphics helped them stay
motivated to complete their games.

6.5 Octopus & Robin: Confident Programmers
This group had one of the most confident programmers, Robin, who
evaluated their programming skills as very strong. This case shows
that confident students may feel that planning is unhelpful when
designing games in Snap!, but that visuals may make planning feel
more purposeful. This group differs from the other case studies in
that they did not have access to the storyboards.

Maze Octopus shared that it was hard to translate their plans
into words because they couldn’t “visualize the stuff that would
have to be done later in the program.” This contrasts with Bat
and Koala, who relied heavily on text and struggled to use visual
storyboarding scenes. Perhaps the ability within storyboards to do
both visual and textual planning gives students more options to
express their ideas when one type of planning feels difficult.

Breakout This group used PlanIT to add actors and events that
describe user input and sprite interactions. After programming the
game, Robin shared that the planning did not feel necessary, as the
group was “writing things down just to write them” and that they
“didn’t refer back to it afterwards.” Robin was the more confident
programmer, so it is possible that they felt more comfortable starting
programming without any planning.

Mashup In contrast to their first two games, Octopus and Robin’s
mashup game was ambitious and unique. They planned for a game
in which a Pac-man sprite is launched from the bottom of the screen
and moves upward into a maze-like structure.

Robin did not think planning “added to [their] coding experience.”
Some students view visual programming environments as inferior,
believing they do not support complex coding tasks [20]. This may
explain why this group’s plans and maze and breakout games were
not very ambitious. Planning may have felt purposeful to this group
if they had a visual component available to help ideate their game
plans. Octopus reiterated that it was hard to visualize their plans,
stating that “imagining the event plans” was difficult.

7 DISCUSSION
Findings from our case studies to answer RQ1 can be sorted into
three themes: storyboards support creative thinking, conditions for
valuing the storyboarding process, and storyboarding struggles and
solutions. We then address RQ2 and then discuss the limitations of
the current study. We refer to each case study with the following
abbreviations: Bat and Koala (BK), Deer and Zebra (DZ), Duck and
Fish (DF), Cat and Wasp (CW), and Octopus and Robin (OR).

7.1 Storyboarding supports creativity
DZ and BK shared that they felt most creative while they were sto-
ryboarding rather than programming. The process of storyboarding
may help support creativity because it allows students to experi-
ment with their ideas and quickly make changes. CW shared that
storyboarding allowed their team to revise their plans when they
had new ideas. The ability to do iterative design before starting
programming may have helped students feel more comfortable
starting their projects and prouder of their results. DZ shared that
the storyboards inspired them and removed the daunting feeling
they get when they stare at the blank scripting space in Snap!. Simi-
larly, when BK were unsure in their ability to complete the mashup
game, they said that storyboarding helped them experiment with
their ideas and create implementable plans. BK shared that they
felt most proud of completing their storyboards, indicating a sense
of ownership over the final ideas.

Design ImplicationsAs seen above, planning is a non-sequential
iterative process for novice programmers. Future planning tools
should allow students the flexibility to alter their designs quickly.
It seems that to support creativity, planning should have a visual
aspect, not just textual. When BK and DZ shared that they felt most
creative storyboarding, they mentioned that the creativity was due
to the ability to see how their game would look when completed.
OR, the team in Condition B, shared that they had a hard time
planning textually because they could not visualize their program.
Additional visual planning may easily be added to PlanIT; when
students define events (e.g. interactions between sprites, user input)
the system may prompt them to create a corresponding storyboard.

7.2 Conditions for valuing storyboarding
Wasp and Duck initially had negative attitudes towards storyboard-
ing, but over the progression of the three sessions they started to
feel that the storyboards were useful to them. They valued story-
boarding when 1.) the games were challenging and 2.) when they
needed to communicate their ideas to their partner.

Planning for challengesWhen creating storyboards for their
mashups, all groups planned for new game features rather than for
the functionality they programmed in previous sessions showing
that these students view the storyboarding slides as a planning
tool rather than as a product. This is seen in CW’s breakout and
mashup storyboards; they planned only for features that they found
useful, rather than creating a complete plan. Therefore, if we want
students to benefit from and utilize storyboarding, the complexity
of the games they plan for must match or exceed their current
programming abilities. DF and CW, found storyboards more helpful
as the games increased in difficulty over the three sessions.

Storyboarding for collaboration Duck - initially negative to-
wards storyboarding - admitted that it “turned out to be helpful”
when their partner joined the session late. Similarly, Koala shared
that the storyboards helped their group stay “on the same page”
and they enjoyed collaborating on them. Three out of four teams
commented in their interviews or surveys that they valued story-
boarding as a communication tool.

Design Implications Since students find storyboards useful
when planning for challenging features, a future planning tool may
prompt students to consider how they can design their game to be

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

322

novel or challenging. Some groups added interesting features to
their maze games - the simplest game - like timers and collectibles.
Future templates may ask students to reflect on the uniqueness and
enjoyment of their games. Because students enjoyed and valued
storyboarding for its collaborative support, future planning tools
should also support pair programming by allowing for concurrent
editing similar to Google Slides.

7.3 Storyboarding struggles and solutions
Students expressed difficulty with knowing how to represent their
ideas using storyboards. DZ explained that they struggled to “or-
ganize the amount of slides [they] were going to have” and often
pondered “should I make these two separate scenes?” Koala shared
that they were unsure how to represent a door opening and a ball
bouncing. Instead, they relied on textual descriptions to express
their ideas. The game mechanics that some students struggled to
represent were easily constructed by others; e.g. DF represented
a bouncing ball with arrows. Simple storyboard examples illus-
trating typical mechanics could help students create better scenes.
Although Google Slides provides shapes that can help illustrate
mechanics (e.g. arrows, callouts), adding them explicitly to a library
of sprites and backgrounds may encourage students to use them.

The visuals in storyboarding may distract some students from
planning complex mechanics. DZ spent a majority of their time
on breakout creating a theme, leaving them without time to plan
and program all the mechanics in a breakout style game. Providing
students a sprite library organized by theme may prevent students
from spending a majority of their time planning their aesthetics
and give them time to plan more complex mechanics. For example,
DF, who were satisfied with the graphics provided to them, used
their time to create rich storyboards detailing their mechanics.

7.4 What planning supports do students need?
We expected students would first use storyboarding to generate
ideas for visual and interactive game aspects, and then use PlanIT
to plan their programs to achieve these ideas. However, all of the
storyboarding groups opted out of using PlanIT for at least one of
the games. The groups who used both storyboards and PlanIT used
PlanIT as expected: to add game descriptions and define interactions
between sprites. Although the storyboards did not ask students to
plan coding structures, all groups used the scene descriptions to
describe their code. DF and DZ wrote pseudo code, BK and WC
described variables, and all groups defined conditionals.

BK, with low confidence, found storyboarding affirming as it
facilitated their accomplishment of features they did not feel capa-
ble of implementing. The more confident DF and CW teams were
initially negative about planning, but felt the storyboards were help-
ful as game complexity increased. The highly confident OR from
Condition B found planning to be unhelpful, suggesting that in
PlanIT they could not visualize their ideas. These findings suggest
that the visual and collaborative support that storyboards provide
can benefit novice programmers with varying levels of confidence.

The more confident students are in programming, the less benefit
they perceive in planning. OR did not see value in planning and did
not accomplish more than lower confidence groups who seriously
engaged in planning. As suggested by prior work, more confident

students may believe that block-based programming environments
cannot be used for advanced programming [20]. These findings
suggest that students, especially those with higher programming
experience, need examples of effective storyboards and innovative
games to realize the potential of these environments.

Table 3: Key design implications

Future storyboarding tools should. . .
allow students the flexibility to alter their designs quickly.
have visual and textual aspects of planning.
prompt students to adapt their game to be novel or challenging.
support pair programming by allowing for concurrent editing.
provide example storyboards that illustrate popular mechanics.
include a sprite library that is organized by theme.

8 CONCLUSION
Through a three-session exploratory study, our findings provide
insights into how students perceive storyboarding for block-based
games to support their creativity, the conditions in which students
find storyboarding helpful, and challenges students experienced
using both planning tools. This study provides recommendations
for designing future planning tools for block-based environments.

We found that novice programmers think storyboarding aids in
pair programming, supports their creativity, and allows them to
easily alter their designs. Students find storyboarding helpful when
the complexity of the games they plan for match or exceed their
programming level. We also found that within our sample, novice
programmers had a preference for storyboarding over PlanIT.

Although this research provides insights into students’ experi-
ences using storyboards, there are limitations. This study was con-
ducted online and not in an authentic classroom setting; therefore,
we are limited in our generalization of their experiences. Because
the sessions were self-directed, students who storyboarded did not
use PlanIT during every session. This limits our comparison of the
affordances of the tools. Further studies may better illuminate how
the tools can be used in combination for planning. Additionally, in
our study design, there is no condition that only uses storyboard-
ing which limits the opportunity to gain similar insights about
storyboarding that we learned about PlanIT from Condition B.

Future work is required to understand how storyboarding af-
fects student programming outcomes. Replicating this study in real
classrooms may tell us how a wider population storyboards, as our
sample consisted of highly motivated students with pre-established
interests in computing. Finally, it may be useful to see how the use
of storyboarding and PlanIT affects how students plan for future
projects without the tools in a long-term study. The results may
tell us what parts of planning students find useful and illuminate
how to use these tools to promote the learning of planning skills.

ACKNOWLEDGMENTS
This work is based on NSF grant number 1917885. Any findings
are the opinions of the authors and do not reflect the views and
opinions of the National Science Foundation.

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

323

REFERENCES
[1] Carl Alphonce and Blake Martin. 2005. Green: A Customizable UML Class

Diagram Plug-in for Eclipse. In Companion to the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(San Diego, CA, USA) (OOPSLA ’05). Association for Computing Machinery, New
York, NY, USA, 108–109. https://doi.org/10.1145/1094855.1094887

[2] Alexander Card, Wengran Wang, Chris Martens, and Thomas Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects in
an Introductory Game Design Class. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, USA, 1–5.

[3] Veronica Catete, Amy Isvik, and Marnie Hill. 2022. A Framework for Socially-
Relevant Service-Learning Internship Experiences for High School Students. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1. ACM, New York, NY, 815–821.

[4] Michael A Evans, Brett D Jones, and Sehmuz Akalin. 2017. Using Video Game
Design to Motivate Students. Afterschool Matters 26 (2017), 18–26.

[5] Ilenia Fronza, Nabil El Ioini, and Luis Corral. 2017. Teaching computational
thinking using agile software engineering methods: A framework for middle
schools. ACM Transactions on Computing Education (TOCE) 17, 4 (2017), 1–28.

[6] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71–79.

[7] Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani.
2020. StoryMakAR: Bringing Stories to Life With An Augmented Reality & Physical
Prototyping Toolkit for Youth. ACM, New York, NY, USA, 1–14. https://doi.org/
10.1145/3313831.3376790

[8] Joanna Goode, Gail Chapman, and Jane Margolis. 2012. Beyond curriculum: the
exploring computer science program. ACM Inroads 3, 2 (2012), 47–53.

[9] Jamie Gorson and Eleanor O’Rourke. 2020. Why Do CS1 Students Think
They’re Bad at Programming? Investigating Self-Efficacy and Self-Assessments
at Three Universities. In Proceedings of the 2020 ACM Conference on Interna-
tional Computing Education Research (Virtual Event, New Zealand) (ICER ’20).
Association for Computing Machinery, New York, NY, USA, 170–181. https:
//doi.org/10.1145/3372782.3406273

[10] Brian Harvey, Daniel D Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
Snap!(build your own blocks). In Proceeding of the 44th ACM technical symposium
on Computer science education. ACM, New York, NY, 759–759.

[11] Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. 2014.
Evaluation of Guided-Planning and Assisted-Codingwith Task Relevant Dynamic

Hinting. In Intelligent Tutoring Systems, Stefan Trausan-Matu, Kristy Elizabeth
Boyer, Martha Crosby, and Kitty Panourgia (Eds.). Springer International Pub-
lishing, Cham, 318–328.

[12] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Is-
sues in Student Programs. In Proceedings of the 2017 ACM Conference on Inno-
vation and Technology in Computer Science Education (Bologna, Italy) (ITiCSE
’17). Association for Computing Machinery, New York, NY, USA, 110–115.
https://doi.org/10.1145/3059009.3059061

[13] Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
et al. 2021. PlanIT! A New Integrated Tool to Help Novices Design for Open-
ended Projects. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. ACM, New York, NY, USA, 232–238.

[14] Kylie Peppler and Yasmin Kafai. 2007. What videogame making can teach us
about literacy and learning: Alternative pathways into participatory culture.
In Situated Play: Proceedings of the Third International Conference of the Digital
Games Research Association (DiGRA). University of California, UC Irvine, 8 pages.

[15] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[16] Peeratham Techapalokul and Eli Tilevich. 2017. Novice Programmers and
Software Quality: Trends and Implications. In 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEE T). IEEE, USA, 246–250.
https://doi.org/10.1109/CSEET.2017.47

[17] Jakita O Thomas, Yolanda Rankin, Rachelle Minor, and Li Sun. 2017. Exploring
the difficulties African-American middle school girls face enacting computational
algorithmic thinking over three years while designing games for social change.
Computer Supported Cooperative Work (CSCW) 26, 4 (2017), 389–421.

[18] Khai N Truong, Gillian R Hayes, and Gregory D Abowd. 2006. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems. ACM, New York, NY, 12–21.

[19] Ian Utting, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick.
2010. Alice, Greenfoot, and Scratch – A Discussion. ACM Trans. Comput. Educ.
10, 4, Article 17 (nov 2010), 11 pages. https://doi.org/10.1145/1868358.1868364

[20] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-Based Programming. In Proceedings
of the 14th International Conference on Interaction Design and Children (Boston,
Massachusetts) (IDC ’15). Association for Computing Machinery, New York, NY,
USA, 199–208. https://doi.org/10.1145/2771839.2771860

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

324

https://doi.org/10.1145/1094855.1094887
https://doi.org/10.1145/3313831.3376790
https://doi.org/10.1145/3313831.3376790
https://doi.org/10.1145/3372782.3406273
https://doi.org/10.1145/3372782.3406273
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1109/CSEET.2017.47
https://doi.org/10.1145/1868358.1868364
https://doi.org/10.1145/2771839.2771860

	Abstract
	1 Introduction
	2 Related Works
	3 PlanIT & Storyboarding Templates
	4 Context
	5 Methods
	5.1 Research Questions
	5.2 Study Design

	6 Case Studies
	6.1 Duck & Fish: Mechanic Illustrators
	6.2 Cat & Wasp: Idea Explorers
	6.3 Bat & Koala: Confidence Builders
	6.4 Deer & Zebra: The Artists
	6.5 Octopus & Robin: Confident Programmers

	7 Discussion
	7.1 Storyboarding supports creativity
	7.2 Conditions for valuing storyboarding
	7.3 Storyboarding struggles and solutions
	7.4 What planning supports do students need?

	8 Conclusion
	Acknowledgments
	References

