
An Experience Report on Introducing Explicit Strategies into
Testing Checklists for Advanced Beginners

Gina R. Bai∗
Vanderbilt University
Nashville, TN, USA

rui.bai@vanderbilt.edu

Sandeep Sthapit
North Carolina State University

Raleigh, NC, USA
ssthapi@ncsu.edu

Sarah Heckman
North Carolina State University

Raleigh, NC, USA
sarah_heckman@ncsu.edu

Thomas W. Price
North Carolina State University

Raleigh, NC, USA
twprice@ncsu.edu

Kathryn T. Stolee
North Carolina State University

Raleigh, NC, USA
ktstolee@ncsu.edu

ABSTRACT
Software testing is a critical skill for computing students, but learn-
ing and practicing testing can be challenging, particularly for be-
ginners. A recent study suggests that a lightweight testing checklist
that contains testing strategies and tutorial information could assist
students in writing quality tests. However, students expressed a
desire for more support in knowing how to test the code/scenario.
Moreover, the potential costs and benefits of the testing checklist
are not yet examined in a classroom setting. To that end, we im-
proved the checklist by integrating explicit testing strategies to it
(ETS Checklist), which provide step-by-step guidance on how to
transfer semantic information from instructions to the possible test-
ing scenarios. In this paper, we report our experiences in designing
explicit strategies in unit testing, as well as adapting the ETS Check-
list as optional tool support in a CS1.5 course. With the quantitative
and qualitative analysis of the survey responses and lab assignment
submissions generated by students, we discuss students’ engage-
ment with the ETS Checklists. Our results suggest that students
who used the checklist intervention had significantly higher quality
in their student-authored test code, in terms of code coverage, com-
pared to those who did not, especially for assignments earlier in
the course. We also observed students’ unawareness of their need
for help in writing high-quality tests.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering → Software verification and validation.

KEYWORDS
unit testing, testing education, checklist

∗This author performed the work while a student at North Carolina State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588781

ACM Reference Format:
Gina R. Bai, Sandeep Sthapit, SarahHeckman, ThomasW. Price, and Kathryn
T. Stolee. 2023. An Experience Report on Introducing Explicit Strategies
into Testing Checklists for Advanced Beginners. In Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education V. 1
(ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3587102.3588781

1 INTRODUCTION
Students often run into trouble when they are learning and practic-
ing software testing. To practice testing, students are expected to
learn new concepts, new syntax, and new tools and libraries [5, 18,
27], which could be particularly challenging to beginners as they
might still struggle with basic programming concepts [11, 22, 32].
Educators also observed that, when practicing testing, students of-
ten make mistakes such as missing boundary testing [5, 9], writing
smelly tests [8, 12], testing happy paths only [8, 9], and not testing
the program until they are already done with development [27].

While educators have sought to support students’ testing prac-
tices with tools, such as Ante [10], Marmoset [31], and Testing
Tutor [15], a recent study pointed out that students desiremore tool
support for unit test composition [8], particularly in determiningwhat
code to test and how to test it. In response to this, we implemented
a lightweight testing checklist in our prior work (Checklist_v1) [7],
which contains testing techniques (e.g., equivalence class partition-
ing and boundary value analysis) and tutorial information (e.g., test
class components and test smells) to support students in writing
quality tests. We evaluated this testing checklist in a lab setting, and
our preliminary evidence suggested that the testing checklist can
help students as effectively as specific coverage tools in terms of
writing quality tests. Our results also suggested that students who
have lower prior knowledge in Java and unit testing may benefit
more from the testing checklist.

In this paper, we introduce the testing checklist as optional tool
support to advanced beginners in testing in the context of a CS1.5
course, in which students are expected to unit test their own source
code implementation throughout the semester. To alleviate students’
challenges in identifying what scenarios need to be tested and
generating test cases that match the program specifications [8], we
integrate explicit strategies into the testing checklist (ETS Checklist,
or checklist as shorthand), which emphasizes how to work on a
problem in a specific way. We aim to explicitly guide students to

https://doi.org/10.1145/3587102.3588781
https://doi.org/10.1145/3587102.3588781

transfer semantic information from the lab assignment instructions
to the possible testing scenarios.

To the best of our knowledge, we are the first to adopt explicit
strategies in testing education. To gain insights into the potential
costs and benefits of the ETS Checklists in a classroom setting, we
invite students to reflect on their use and evaluation of the ETS
Checklists via weekly surveys during the study.

In this experience report paper, we share our observations from
developing explicit testing strategies, and we analyze the effective-
ness of the checklist intervention. Moreover, with the survey re-
sponses, we discuss students’ engagement with the ETS Checklists
from the following aspects: whether students adopt the check-
lists as a form of tool support or not? If yes, how do they use the
checklists? If no, why not, and what changes should we make to
encourage tool adoption? Our results suggest that, introducing the
tools, in this case, the ETS Checklists, earlier in students’ learning
process could significantly improve students’ testing performance
and may encourage tool adoption. Our contributions include:
• a lightweight testing checklist containing both tutorial informa-
tion and explicit testing strategies that siginificantly improved
the quality of student-authored test code;

• experiences in adopting explicit strategies to testing education;
• lessons learned in introducing an optional testing tool support
to students in a classroom setting.

2 OPEN PROBLEMS AND MOTIVATION
Many students perceive software testing as “uninteresting”, “te-
dious”, “unnecessary” and “irrelevant” due to the course-level small-
scale projects and exercises [9, 27, 28, 30]. Meanwhile, to perform
(automated) testing, students are expected to learn new concepts,
new syntax, new tools, and new libraries. This is particularly chal-
lenging to beginners as they might still struggle with basic pro-
gramming concepts [11, 22, 32]. Prior studies [11, 22, 27, 30] also
point out that the increased cognitive load placed on learning new
tools exaggerate students’ negative attitudes towards testing.

Moreover, students have misconceptions about testing and make
mistakes in testing. For example, many students view testing as
debugging [9, 28], and they often stop testing after designing a test
for a presumed bug in the code [9]. Educators also reported that
students “rarely saw how test failures can help find bugs in [an]
implementation” [20], and hence might modify the failing tests to
remove the failure but not the underlying fault [28].

Though the Checklist_v1 [7] helped address some of the prob-
lems students encounter during software testing, students expressed
their needs for more support in knowing how to test. To that end,
we adopt explicit strategies for testing education.

The concept of explicit programming strategies was introduced
by LaToza et al. [25] as human-executable procedures for accom-
plishing programming tasks. That is, explicit strategies provide a
well-defined series of actions for developers to follow and perform.
The researchers found that developers who used explicit strategies
were objectively more successful at the design and debugging tasks
than those who were free to choose their own strategies. The ex-
plicit programming strategies also allowed developers to work in a
more organized, systematic, and predictable way, although more
constrained at the same time [25].

The goal of the ETS Checklist is to help students transfer se-
mantic information from lab assignment requirements to possible
testing scenarios through an unambiguous, step-by-step process.
In this work, the explicit strategies focused specifically on require-
ments coverage. We illustrate the explicit testing strategies using
one of the checklists we developed in this study, shown in Section 4.

At the same time, to provide testing support without a steep
learning curve, we deliberately keep the ETS Checklists as light-
weight as the original version in our prior work [7]. Instead of
distributing the checklists via Markdown files on GitHub as prior
work, we created a GitHub Issue containing the ETS Checklist on
each student team’s repository, which allows students to check off
the items during testing, as suggested in prior work [26].

3 CLASSROOM SETTING
We ran this study in Spring 2022 with students who were taking
a 3-credit CS1.5 lecture course and its associated 1-credit labora-
tory course at North Carolina State University (NCSU), a research-
intensive university in the United States. This CS1.5 course is a
Java-based course taken by all CS majors and minors and is open to
non-majors. In this course, students learn fundamentals in object-
oriented design and development, basic software engineering con-
cepts, and linear data structures. In the lab, students practice the
concepts and tools covered in the lecture. Students attend weekly
lab meetings (110 minutes each) and work in teams (2-4 students)
to implement and test new functionality in a semester-long project.

Lab Assignments and Team Formation: Students complete
a total of 11 labs with three different teams over the semester: they
complete Labs 1-4 with Rotation #1, Labs 5-8 with Rotation #2, and
Labs 9-11 with Rotation #3. When students rotate to a new team,
they are instructed to build off the best existing implementation
from their new teammates (i.e., from Labs 4 & 8). Students are
randomly assigned into teams by the teaching assistants (TAs).
Students collaborate with their teammates and use the same GitHub
repository for all labs in one rotation. As the checklist is designed for
students who have received some education in software testing but
may need some further assistance, we introduce the ETS Checklists
to students in the second half of the semester with Labs 6-11.

Educational Support: In Spring 2022, there were nine in-
person lab sections, and each lab section has two TAs. All 18 of
the TAs received TA training at the beginning of the semester. The
TAs start each lab with an overview of the tasks, using a provided
set of slides, and recap the concepts and tools that were covered in
the lecture course and the methods that students are expected to
implement and test. TAs are present throughout the lab to answer
students’ questions and provide guidance and feedback. Outside of
the lab meetings, students could attend the office hours held by all
instructors and TAs. They were also encouraged to post questions
on Piazza for peer, TA, and instructor support.

This study received IRB approval from NCSU.

4 THE ETS CHECKLIST
We present an example ETS Checklist (as shown in Table 1) in this
section to demonstrate the use of explicit testing strategies. While
the explicit testing details in this example checklist (item #10) are
specific to Lab 6 (Section 4.1) from the laboratory course, the rest
of the checklist was used for all labs.

Table 1: One of the ETS Checklists used in this study, which contains the explicit testing strategies designed for Lab 6 (item #10).

Item Test Case Checklist
Each test case should:

#1 □ be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test”)
#2 □ have at least one assert statement or assert an exception is thrown.
#3 □ evaluate/test only one method

Each test case could:
#4 □ be descriptively named and commented
#5 □ If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)
#6 □ If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluates one behavior.

Test Suite Checklist
The test suite should:

#7 □ have at least one test for each requirement
#8 □ appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)
#9 □ contain a fault-revealing test for each bug in the code (i.e., a test that fails)

#10

□ test an FSM (Explicit Testing Strategies for Lab 6)
□ Test every state:
□ Initial state □ States in between □ Final/End state

□ For each state, consider the following scenarios:
□ Transition on Letter
□ Pick an input with a valid number of transitions
□Min □ Between min and max □Max

□ Pick an input with an invalid number of transitions
□ Less than min □ Greater than max

□ Transition on Digit
□ Pick an input with a valid number of transitions
□Min □ Between min and max □Max

□ Pick an input with an invalid number of transitions
□ Less than min □ Greater than max

□ Transition on Other
□ Invalid, causing an exception

To improve the test suite, you could:
#11 □ measure code coverage using an appropriate tool, such as EclEmma. Inspect uncovered code and write tests as appropriate.

4.1 Requirements in Lab 6
In Lab 6, students were expected to implement and test a finite state
machine (FSM) that validates a course name string. The require-
ments stated that:
Req1 : A valid course name begins with 1-4 letters, followed by ex-

actly 3 digits, followed by an optional 1 letter suffix.
Req2 : If a course name does not meet the description, the course

name is invalid.
Req3 : Spaces are no longer allowed between the prefix and number.

4.2 The ETS Checklist Designed for Lab 6
Unlike the original checklist [7], which reminds students to con-
sider the testing techniques (i.e., equivalence class partitioning and
boundary value analysis) at a high level, this ETS Checklist explic-
itly guides students to divide the possible inputs into partitions and
select representatives from each range (item #10 in Table 1).

To design the explicit strategies, one of the authors followed
a five-step process, and we validated the checklist with a second
author. We illustrate each step using the example of Lab 6:
• Step 1: Determine the methods that need to be tested.
For Lab 6, students are expected to test an FSM that validates a
course name string, specifically isValid(), which accepts a String
parameter and returns a boolean.

• Step 2: Apply domain knowledge when necessary.
We first remind students that it is important to “Test every state”
in an FSM, though it is not explicitly stated in the lab assignment
instructions.

• Step 3: Apply testing technique equivalence class partition-
ing.
For each state, we divide the input based on its type: “Transition

on Letter/Digit/Other”, which addresses the Req1 & Req3. We
further divide the partitions into sub-partitions based on the va-
lidity of the input: “valid/invalid number of transitions”, which
addresses the Reqs1-3.

• Step 4: Apply testing technique boundary value analysis
on each partition.
Since values at or close to boundaries of a range often cause prob-
lems [3], we remind students to create tests that include repre-
sentatives of boundary values in each range (e.g., “Min/Between
min and max/Max”, addressing Req1).

• Step 5: Instruct students to create a test for each partition.
We explicitly ask students to “Pick an input...” in each partition
and create a test case.

To validate the explicit testing strategies designed for Labs 6-11,
we conducted a small pilot study with a first-year graduate student
in CS who had no prior experience with this CS1.5 course or other
laboratory courses offered at NCSU. This graduate student was
instructed to implement the methods required in the lab, and write
tests strictly following the ETS Checklist. We measured their test
code in terms of instruction coverage and branch coverage. As
needed, we modified the wording of the explicit testing strategies
to avoid ambiguity and adjusted the sub-items to ensure it was
possible to achieve 100% instruction coverage and branch coverage
by following the ETS Checklist suggestions.

5 CLASSROOM CHECKLIST INTEGRATION
To gain insights into how students adopt the ETS Checklists and
when the support from the ETS Checklists is most appreciated, we
divided the in-person lab sections into two groups (balanced in
terms of meeting times):

Table 2: Group Assignment and Student Information

Labs 6 - 8 Labs 9 - 11
#Students #Teams w/ETS #Students #Teams w/ETS

Grp1 97 33 Yes 94 33 No
Grp2 95 32 No 92 32 Yes

Table 3: Survey Response Rates

Labs 6 - 8 Labs 9 -11
Short_1 Short_2 Comp Short_1 Short_2 Comp

Grp1 7 72 68 - - -(7.2%) (74.2%) (70.1%)

Grp2 - - - 72 71 45
(78.3%) (77.2%) (48.9%)

• Group 1 (Grp1) - five sections in total
– 1 Morning section, 4 Afternoon sections
– 2 Monday sections, 2 Tuesday sections, 1 Wednesday section

• Group 2 (Grp2) - four sections in total
– 1 Morning section, 3 Afternoon sections
– 2 Monday sections, 1 Tuesday section, 1 Wednesday section

We distributed the ETS Checklists to these two groups in different
phases of the semester. For Labs 6-8 (in which students worked in
Rotation #2), Group 1 received the ETS Checklists (w/ETS=Yes in
Table 2), while Group 2 did not. For Labs 9-11 (in which students
worked in Rotation #3), Group2 received the ETS Checklists while
Group1 did not. Students in all groups completed their lab assign-
ments and committed to their team repositories for all labs. Study
materials are available on GitHub [6].

In this study, students who received the ETS Checklists (w/ETS
group) were invited to complete three weekly surveys in total:
two Short Surveys in weeks 1 & 2 (Short_1 and Short_2 in Table 3,
respectively) and one Comprehensive Survey in week 3 (Comp). The
Comprehensive Survey [6] asked students how they used the ETS
Checklists as well as how useful they found it. This survey consists
of Likert-scale rating, selection, and open-ended questions. The
Short Survey [6] only focused on students’ use and evaluation of
the ETS Checklists. This survey consists of Likert-scale rating and
open-ended questions. We did not survey students in the control
group as they received no additional resources.

Completion of the surveys and all survey questionswere optional.
Students were not compensated for completing them. Table 3 shows
the response rates. In total, we collected 335 survey responses (Grp1:
147 surveys, Grp2: 188 surveys). The first Short Survey (Grp1 -
Short_1) was distributed via Qualtrics. To improve the response
rates, all subsequent surveys were paper-based.

To analyze the survey responses, we converted the 5-point Likert
scale in the rating questions to numbers and treat them as interval-
scaled data [19], where 1 maps to the lowest score (e.g., “Not at
all helpful” and “Never”), and 5 maps to the highest score (e.g.,
“Extremely helpful” and “Always”). We qualitatively analyzed the
open-ended questions.

6 RESULTS
We discuss how students engage with the ETS Checklists with a
series of questions.

Table 4: Answers to Survey Question “How often did you
consult the checklist during...” (5-point Likert Scale, where
1=“Never”, 3=“Sometimes”, and 5=“Always”)

Grp. Survey System Unit Disc Overall
avg med avg med avg med avg med

Grp1
(L6-8)

Short_1 1.7 2.0 2.4 3.0 2.3 3.0 2.1 2.0
Short_2 1.6 1.0 2.0 1.0 1.9 2.0 1.8 1.0
Comp 1.8 1.5 2.0 2.0 2.0 2.0 1.9 2.0

Grp2
(L9-11)

Short_1 1.4 1.0 1.8 1.0 1.6 1.0 1.6 1.0
Short_2 1.4 1.0 1.7 1.0 1.6 1.0 1.5 1.0
Comp 1.4 1.0 1.7 1.0 1.5 1.0 1.5 1.0

Table 5: Answers to Survey Question “How would you rate
this checklist in terms of helpfulness during...” (5-point Lik-
ert Scale, where 1 =“Not at all helpful”, 3=“Moderately help-
ful”, and 5= “Extremely helpful ”)

Grp. Survey System Unit Disc Overall
avg med avg med avg med avg med

Grp1
(L6-8)

Short_1 2.5 2.5 3.2 3.0 2.8 3.0 2.8 3.0
Short_2 2.7 3.0 3.2 3.0 3.0 3.0 3.0 3.0
Comp 2.6 3.0 3.0 3.0 2.7 3.0 2.8 3.0

Grp2
(L9-11)

Short_1 2.5 3.0 3.2 3.0 2.4 2.0 2.7 3.0
Short_2 2.4 2.0 3.0 3.0 2.6 3.0 2.7 3.0
Comp 2.4 2.0 3.0 3.0 2.6 2.0 2.7 2.0

Q: Do students appreciate the ETS Checklists?

About half of the students who had the access to the checklists self-
reported that they did not use the checklists when working on the
lab assignments. However, students who chose to consult the ETS
Checklists found them moderately helpful.

Students in the w/ETS group self-reported their use (Table 4) and
evaluations (Table 5) of the ETS Checklists in two short, weekly
surveys (Short_1, Short_2) and one Comprehensive Survey (Comp).
While most of the students in Grp1 rarely consulted the checklists,
the ones who consulted the checklists considered them “moderately
helpful”. Having gained more knowledge and experience in testing
by the time students in Grp2 saw the ETS Checklists, less of them,
compared to Grp1 students, chose to consult the checklists, but
they still found the checklists “moderately helpful”.

There are several possible interpretations of the reduction in
checklist adoption. One is that the checklists were scaffolding that
could be removed as students gain more knowledge and experience
in testing, particularly since Labs 7-11 all focused on implementing
and testing linear data structures such as array-based lists, linked
lists, stacks, and queues [6]. Consequently, as students practiced
and internalized the skills to test a linear structure, they needed
less support from the checklists. Another interpretation is that as
the semester approached the end, students had established their
own testing workflow, as well as had less time or energy to adopt
additional resources even though they found them helpful.

Some students in Grp2 also believed that the ETS Checklists
should be introduced earlier and could benefit the beginners. As
one student reported in the Comprehensive Survey, “In my opinion,
at this point in the semester, we already know most of the things on
the checklist. I think this checklist would be extremely helpful near
the beginning of the semester, when we started writing unit tests”.

Q: Why do students opt to not using the ETS Checklists?

Students were not motivated to use the ETS Checklists, or claimed that
they did not need extra support in testing.

As 49.3% (165/335) of the weekly surveys students claimed to
not use the ETS Checklists at all (Grp1: 54/147 surveys, 36.7%; Grp2:
111/188 surveys, 59.0%), we further explored why students did not
use them. Among these 165 survey responses, 83 of them provided
open-ended comments on the checklists, including why they did not
use them. We summarize the two major reasons students provided:
(1) Studentswerenotmotivated to use the checklist (29 responses,

34.9%), since
• they forgot to use the checklist (18 responses, 21.7%).
E.g., “Forgot about the checklist so I didn’t use it, but it seems
helpful” and, “I honestly forgot we had the checklist when we
did the lab. [...] During group discussion, it was very helpful.
Next time I would definitely use it”.

• they did not want to adopt new tools or new testing practices
(7 responses, 8.4%).
E.g., “Introduce them at the beginning of the semester - at this
point we all have a certain way of delegating and checking off
tasks” and, “I have done fine without the checklist and see no
need to change my habits this closer to the end of the semester”.

• the adoption of the checklist would not directly improve their
grades in lab assignments (4 responses, 4.8%).
E.g., “The checklist seems useful but many students share a
similar sentiment about it: if you give a student extra work on
top of an already long assignment and it isn’t for a grade, they
won’t do it” and, “I did not think it was necessary to get a good
grade, so I did not use it much since it just took more time”.

(2) Students did not perceive a need for help from the checklists
(23 responses, 27.7%), since
• not all students need the same level of tool support, which
echoes the finding in prior study [21] (20 responses, 24.1%).
E.g., “Did not use, I already have my own checklist in my head”,
“I just didn’t really use it. I’ve never felt I needed the extra help”
and, “No, I’m a strong independent programmer who does not
need a checklist”.

• students had other sources of help (e.g., teammates and TAs),
which echoes the finding that “asking for help is a more
efficient strategy” compared to independently solving a prob-
lem [23] (3 responses, 3.6%)).
E.g., “I just found myself rarely consulting the checklist and
instead consulted with my teammates directly”.

Another potential explanation is that the explicit strategies were
too explicit and became long to read, which discouraged the stu-
dents from using them. Students reflected in the weekly surveys
that “It’s a useful tool that we probably should have used more. I found
it very thorough, although the time investment needed to complete it
was more than we were able to afford” and, “It feels redundant and
adds to the swath of things we already need to consult or track”.

Q: Do students need support from the ETS Checklists?

The quality of student-authored tests suggests the need for more sup-
port, and students who chose to use the ETS checklist wrote higher
quality tests.

Table 6: Measurements of the quality of student-authored
tests: instruction coverage (%), branch coverage (%), mutation
coverage (%), and the number of unhappy path tests (%)

.Lab Group Instruction Branch Mutation #Unhappy

Lab8 Grp1 (w/ETS) 85.0 77.6 47.9 15.8
Grp2 84.2 76.5 47.3 16.0

Lab11 Grp1 82.3 74.4 46.3 16.0
Grp2 (w/ETS) 81.7 74.1 46.1 16.0

Table 7: ANOVA results for comparing the project teams that
consulted the ETS Checklists and the teams that did not.

Independent Variable
Dependent Variable 𝑢𝑠𝑒𝑑𝐸𝑇𝑆 𝑖𝑠𝐺𝑟𝑝1 𝑢𝑠𝑒𝑑𝐸𝑇𝑆 ∗ 𝑖𝑠𝐺𝑟𝑝1
1) Instruction Coverage 0.0200 * 0.3310 0.0033 **
2) Branch Coverage 0.0130 * 0.4935 0.0025 **
3) Mutation Coverage 0.0961 0.7243 0.2851
4) #Unhappy Path Tests 0.0664 0.4499 2.17e-06 ***

*𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001

A primary reason students gave for not using the checklist is that
it was not needed to create high-quality tests, especially later in the
semester (Grp2). However, the analysis on the quality of student-
authored tests suggests that the checklist could have helped them
write better tests, but they were unaware that they needed help.

We measured the quality of student-authored tests on Labs 8
and 11 (the final team products of Rotations #2 and #3, respectively)
with four metrics, and present the averages in Table 6:
• 1) Instruction coverage & 2) Branch coverage
We measured these two completeness metrics via EclEmma [1].

• 3) Mutation coverage
We measured this effectiveness metric via PITest with its default
mutation operators [2, 4, 14].

• 4) The number of unhappy path tests
Prior studies [7–9] revealed that students tend to only test the
happy paths, and we address this issue via the checklist interven-
tion. However, to our knowledge, there is no existing approach
to automatically detect the unhappy path tests. Hence, we opted
to only consider the tests that assert an exception is thrown:
1) assertThrows, 2) @Test(expected = Exception.class, or 3) Try-Catch
blocks. We counted and adopted these as the number of un-
happy path tests. This is a coarse measure of completeness.

Treating these fourmetrics as dependent variables, wemeasured the
impact of the following independent variables: 𝑢𝑠𝑒𝑑𝐸𝑇𝑆 for com-
paring the teams that self-reported consulting the ETS Checklists
(39/130) to the teams that did not (91/130), and 𝑖𝑠𝐺𝑟𝑝1 for the time
of receiving the checklist intervention (Grp1 vs. Grp2). Note that
𝑢𝑠𝑒𝑑𝐸𝑇𝑆 is only true for students who both had access to the ETS
Checklists (randomly assigned) and chose to use it (self-selected),
so it combined the treatment effect of the ETS Checklists and the
selection effect of students willing to use it. We used a two-way
ANOVA analysis to explore the impact of each variable indepen-
dently as well as their interaction (𝑢𝑠𝑒𝑑𝐸𝑇𝑆 ∗ 𝑖𝑠𝐺𝑟𝑝1). While this
is less resilient to the non-normal tendencies in some of our data
than a Kruskal-Wallis ANOVA, it is necessary to understand both
factors and their interaction [24]. We report the p-values in Table 7.

The analysis of test code quality suggests that using the ETS
Checklists had a statistically significant impact on the complete-
ness of student-authored tests (𝑝 = 0.0200 for instruction cover-
age and 𝑝 = 0.0130 for branch coverage). The adoption of the

ETS Checklists also had statistically significant interaction effects
(𝑢𝑠𝑒𝑑𝐸𝑇𝑆 ∗ 𝑖𝑠𝐺𝑟𝑝1) on instruction coverage, branch coverage, and
the number of unhappy path tests. This indicates that students ben-
efited more from the ETS Checklists in their early learning process,
which was conjectured in prior work [7].

For both Grp1 and Grp2 and for all labs, the average mutation
coverage is less than 50%, meaning that less than half of the mutated
code could be detected by the student-authored tests. We found
that using ETS Checklists had a large effect size on the mutation
coverage with Cohen’s d of = 1.92, though it is statistically non-
significant (𝑝 = 0.0961). This suggests that the checklist could have
helped students achieve higher mutation coverage, but they were
unaware that they needed help.

These findings echo the observations in prior studies that stu-
dentsmay avoid help due to 1) unawareness of the need for help [17],
2) concerns about the help-giver’s (in this case, a checklist) compe-
tence [16, 29], and 3) a desire for independence [16].

7 DISCUSSION
In this study, we surveyed students on their use and evaluation
of the ETS Checklists, and we analyzed the effectiveness of the
checklists with student-authored tests. This information shed light
on potential practices of introducing the ETS Checklists as a form
of testing tool support to a classroom.

7.1 Low Motivation to Adopt New Tools
In a prior study [7], we conjectured that the checklist could poten-
tially address students’ hesitation to adopt new tools or struggle
to use them effectively given the minimal learning barrier. How-
ever, in this study, we found that students tended to not adopt tool
support that is not integrated into their workflow – despite the
fact that our results suggest they both needed help and may have
benefited from the checklist. Students overlooking the importance
of testing could also lead to the low motivation of tool adoption.

We propose following approaches to encourage adoption of the
ETS Checklists:

7.1.1 Integrate the ETS Checklists into the program requirements in
the assignments. Instead of presenting the explicit testing strategies
designed for all methods in the checklists, we could offer them
as optional support for students (e.g., hidden in a question mark
button), and provide them next to its associated methods in the lab
assignment instructions. This could reduce the amount of reading
and hence avoid overwhelming students, as well as avoid overtaxing
those who do not need extra support in testing these methods.

7.1.2 Have students develop their own ETS Checklists. Ko et al. [23]
introduced the explicit strategies in debugging and code reusing to
an introductory programming course. They found that though pro-
vided the more systematic strategies, students preferred to engage
in rapid cycles of editing and testing, without deeply understanding
their code. They also pointed out that the strategies might be too
sophisticated to learn while also learning basic programming con-
cepts. Meanwhile, Chong and colleagues [13] reported that having
students create their own code review checklist stimulated students
in developing their analytical skills for code reviews. Hence, we
encourage exploration of potential benefits of having students de-
velop their own ETS Checklists. This activity may help students

understand the value of testing, and it could also lead to insights
into students’ decision-making process when practicing testing and
hence inform better teaching practices.

7.2 Threats to Validity
Conclusion: The lab assignment instructions explicitly required
students to achieve 80% statement coverage on every non-UI and
non-test class. This threshold of code coverage was applied to all
submissions from both groups, and might have led to overestima-
tion of students’ performance on completeness metrics.

The “#Unhappy Path Tests” metric focused only on tests in which
an exception is thrown while there are other ways in which un-
happy paths can be exercised. This incomplete approximation of
unhappy paths may impact the conclusions drawn from the metric.
Internal: The adoption of the ETS Checklists and the completion
of weekly surveys on use of the checklists were optional, it subject
to selection bias, and consequently conclusions drawn from it may
not generalize. However, the code coverage thresholds were applied
to all student submissions, and we received high response rates
(>70%) from both groups, so conclusions are drawn from a majority
of the students. We only observed students’ interactions with a
codebase that they were familiar with (either implemented by stu-
dents themselves or their peers). Students may perform differently
on an unfamiliar codebase.
External: The students in the study were advanced beginners who
had been exposed to unit testing for more than one semester, and
hence these results may not generalize to other students or those
with less testing experience.

8 CONCLUSION & FUTUREWORK
In response to students’ needs for support in identifying how to
test their code [8], in this study, we designed explicit strategies in
unit testing, which provide step-by-step guidance on how to test
their own source code implementation with scenarios that match
to the lab assignment requirements. We integrated the explicit
testing strategies to a lightweight checklist [7] that has been found
to be helpful in assisting student in writing quality tests, and we
introduced the ETS Checklist as optional tool support to advanced
beginners in a CS1.5 course. Our results suggest that consulting the
ETS Checklists could significantly improve the quality of student-
authored tests; however, most of the students were unaware of their
needs for help. This study also reveals that students did not engage
with the checklists as a way of seeking help when performing
testing in a classroom setting. To better understand and hence
address students’ needs in a particular class and its associated
programming labs, future work could investigate students’ help-
seeking behaviors through platforms like Piazza. Future studies
in classroom settings could integrate the ETS Checklists directly
into the program requirements to improve the skimmability and
reduce context switching when working on the assignment. We
also encourage studies on exploring the potential benefits of having
students write their own explicit strategies.

9 ACKNOWLEDGEMENTS
This work is supported in part by NSF IUSE #2141923 and NSF SHF
#1749936.

REFERENCES
[1] [n.d.]. EclEmma: Coverage Counters. https://www.eclemma.org/jacoco/trunk/

doc/counters.html. Accessed: 2022-08-19.
[2] [n.d.]. PITest: Mutation Operators. http://pitest.org/quickstart/mutators/. Ac-

cessed: 2022-08-19.
[3] Paul Ammann and Jeff Offutt. 2017. Introduction to Software Testing (2 ed.).

Cambridge University Press, USA.
[4] Michael Andersson. 2017. An Experimental Evaluation of PIT’s Mutation Opera-

tors. , 27 pages.
[5] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic

Software Testing Education. In ACM Technical Symposium on Computer Science
Education (SIGCSE ’19). 414–420.

[6] Gina R. Bai. 2023. ginaBai/ExplicitTestingStrategiesStudy:StudyMaterials. https:
//doi.org/10.5281/zenodo.7702953

[7] Gina R. Bai, Kai Presler-Marshall, Thomas Price, and Kathryn T. Stolee. 2022.
Check It Off: Exploring the Impact of a Checklist Intervention on the Quality of
Student-written Unit Tests. In 27th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’22).

[8] Gina R. Bai, Justin Smith, and Kathryn T. Stolee. 2021. How Students Unit
Test: Perceptions, Practices, and Pitfalls. In ITiCSE 2021: 26th ACM Conference on
Innovation and Technology in Computer Science Education. ACM, 248–254.

[9] Lex Bijlsma, Niels Doorn, Harrie Passier, Harold Pootjes, and Sylvia Stuurman.
2021. How do Students Test Software Units?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). 189–198.

[10] Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based
Testing of Assignments. In Technical Symposium on CS Education. 488–493.

[11] Ingrid A. Buckley and Winston S. Buckley. 2017. Teaching Software Testing
using Data Structures. International Journal of Advanced Computer Science and
Applications 8, 4 (2017).

[12] Kevin Buffardi and Juan Aguirre-Ayala. 2021. Unit Test Smells and Accuracy of
Software Engineering Student Test Suites. ACM, New York, NY, USA, 234–240.

[13] Chun Yong Chong, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn.
2021. Assessing the Students’ Understanding and their Mistakes in Code Review
Checklists: An Experience Report of 1,791 Code Review Checklist Questions
from 394 Students. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). 20–29.

[14] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).
In Proceedings of the 25th International Symposium on Software Testing and Analy-
sis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452.

[15] Lucas Cordova, Jeffrey Carver, Noah Gershmel, and Gursimran Walia. 2021. A
Comparison of Inquiry-Based Conceptual Feedback vs. Traditional Detailed Feed-
back Mechanisms in Software Testing Education: An Empirical Investigation. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New
York, NY, USA, 87–93.

[16] Hans Van der Meij. 1988. Constraints on Question Asking in Classrooms. Journal
of Educational Psychology 80, 3 (1988), 401–405. (1988).

[17] Sharon Nelson-Le Gall. 1981. Help-seeking: An understudied problem-solving
skill in children. 1, 3 (1981), 224–246.

[18] Vahid Garousi, Austen Rainer, Per Lauvås, and Andrea Arcuri. 2020. Software-
testing education: A systematic literature mapping. Journal of Systems and
Software 165 (2020), 110570.

[19] Spencer E. Harpe. 2015. How to analyze Likert and other rating scale data.
Currents in Pharmacy Teaching and Learning 7, 6 (2015), 836–850.

[20] Sarah Heckman, Jessica Young Schmidt, and Jason King. 2020. Integrating Testing
Throughout the CS Curriculum. In Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 441–444.

[21] Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and Sarah Heckman.
2015. Bespoke Tools: Adapted to the Concepts Developers Know. In Foundations
of Software Engineering (ESEC/FSE 2015). 878–881.

[22] Edward L. Jones. 2001. Integrating Testing into the Curriculum — Arsenic in
Small Doses. In Proceedings of the 32nd SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’01). ACM, New York, NY, USA, 337–341.

[23] Amy J Ko, Thomas D LaToza, Stephen Hull, Ellen A Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching explicit
programming strategies to adolescents. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 469–475.

[24] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

[25] Thomas D LaToza, Maryam Arab, Dastyni Loksa, and Amy J Ko. 2020. Explicit
programming strategies. Empirical Software Engineering 25, 4 (2020), 2416–2449.

[26] Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes, and Thomas W.
Price. 2021. Just a Few Expert Constraints Can Help: Humanizing Data-Driven

Subgoal Detection for Novice Programming. In International Conference on Edu-
cational Data Mining.

[27] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider.
2014. Enablers, Inhibitors, and Perceptions of Testing in Novice Software Teams.
In ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). 30–40.

[28] Upsorn Praphamontripong, Mark Floryan, and Ryan Ritzo. 2020. A Preliminary
Report on Hands-On and Cross-Course Activities in a College Software Testing
Course. In Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 445–451.

[29] Thomas Price, Zhongxiu Peddycord-Liu, Veronica Catete, and Tiffany Barnes.
2017. Factors Influencing Students’ Help-Seeking Behavior while Programming
with Human and Computer Tutors.

[30] Lilian Passos Scatalon, Jeffrey C. Carver, Rogério Eduardo Garcia, and
Ellen Francine Barbosa. 2019. Software Testing in Introductory Programming
Courses: A Systematic Mapping Study. InACM Technical Symposium on Computer
Science Education (SIGCSE ’19). 421–427.

[31] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-driven
Development (TDD). In Symposium on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). 907–913.

[32] Joseph Timoney, Stephen Brown, and Deshi Ye. 2008. Experiences in Software
Testing Education: Some Observations from an International Cooperation. In
2008 The 9th International Conference for Young Computer Scientists. 2686–2691.

https://www.eclemma.org/jacoco/trunk/doc/counters.html
https://www.eclemma.org/jacoco/trunk/doc/counters.html
http://pitest.org/quickstart/mutators/
https://doi.org/10.5281/zenodo.7702953
https://doi.org/10.5281/zenodo.7702953

	Abstract
	1 Introduction
	2 Open Problems and Motivation
	3 Classroom Setting
	4 The ETS Checklist
	4.1 Requirements in Lab 6
	4.2 The ETS Checklist Designed for Lab 6

	5 Classroom Checklist Integration
	6 Results
	7 Discussion
	7.1 Low Motivation to Adopt New Tools
	7.2 Threats to Validity

	8 Conclusion & Future Work
	9 Acknowledgements
	References

