Check It Off: Exploring the Impact of a Checklist Intervention
on the Quality of Student-authored Unit Tests

Gina R. Bai
North Carolina State University
Raleigh, NC, USA
rbai2@ncsu.edu

Thomas W. Price
North Carolina State University
Raleigh, NC, USA
twprice@ncsu.edu

ABSTRACT

Software testing is an essential skill for computer science students.
Prior work reports that students desire support in determining
what code to test and which scenarios should be tested. In response
to this, we present a lightweight testing checklist that contains
both tutorial information and testing strategies to guide students
in what and how to test. To assess the impact of the testing check-
list, we conducted an experimental, controlled A/B study with 32
undergraduate and graduate students. The study task was writing
a test suite for an existing program. Students were given either
the testing checklist (the experimental group) or a tutorial on a
standard coverage tool with which they were already familiar (the
control group).

By analyzing the combination of student-written tests and sur-
vey responses, we found students with the checklist performed as
well as or better than the coverage tool group, suggesting a poten-
tial positive impact of the checklist (or at minimum, a non-negative
impact). This is particularly noteworthy given the control condition
of the coverage tool is the state of the practice. These findings sug-
gest that the testing tool support does not need to be sophisticated
to be effective.

CCS CONCEPTS

« Applied computing — Education; « Software and its engi-
neering — Software verification and validation.

KEYWORDS

unit testing, testing education, checklist

ACM Reference Format:

Gina R. Bai, Kai Presler-Marshall, Thomas W. Price, and Kathryn T. Stolee.
2022. Check It Off: Exploring the Impact of a Checklist Intervention on
the Quality of Student-authored Unit Tests. In Proceedings of the 27th ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9201-3/22/07...$15.00
https://doi.org/10.1145/3502718.3524799

Kai Presler-Marshall
North Carolina State University
Raleigh, NC, USA
kpresle@ncsu.edu

Kathryn T. Stolee
North Carolina State University
Raleigh, NC, USA
ktstolee@ncsu.edu

Conference on Innovation and Technology in Computer Science Education Vol
1 (ITiCSE 2022), July 8—13, 2022, Dublin, Ireland. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3502718.3524799

1 INTRODUCTION

Software testing is widely practiced in industry [25, 41] for pre-
venting and catching regression faults in software development
and maintenance, and hence is an essential skill for both profes-
sional software developers and graduating computer science stu-
dents. Educators have sought to establish and enhance students’
testing skills in recent years [44], including integrating testing in
CS1 courses [23, 27, 47], and introducing tools to support students
learning testing [10, 15, 47].

However, students often run into trouble when they are learn-
ing testing. For example, students make mistakes such as missing
boundary testing [5, 9], writing smelly tests [8, 13], testing happy
paths only [8, 9], and not testing the program until they are already
done with development [40]. Additionally, prior work [8] surveyed
54 students from two universities about their testing perceptions
and practices. The students reported they wanted more tool support
for unit test composition. The two most difficult aspects of unit test-
ing were reported to be "Determining what to check" and "Identifying
which code/scenarios to test".

Checklists have been identified as a useful tool in software en-
gineering for code review [14, 43] or encouraging software secu-
rity [3]. Prior work [36] has found that students appreciate having
a checklist of programming sub-goals during implementation. To
provide testing support without the steep learning curve of a new
tool [31, 32], we conjectured that a checklist containing testing
tips could alleviate some students’ testing struggles. By integrating
tutorial information into the checklist, knowledge gaps can be filled
for students that need it (as not all students require the same level
of tool support [30]). We implemented a testing checklist that:

e contains both tutorial information and testing strategies to
assist students in determining what to test and how to test,

o addresses common mistakes and smells that have been ob-
served in recent testing education research studies,

e is static and non-interactive, which provides testing support
without introducing steep learning curves, and

o is designed to be lightweight enough to transfer across class-
rooms, instructors, and universities.

https://doi.org/10.1145/3502718.3524799
https://doi.org/10.1145/3502718.3524799

The application of checklists to software testing is novel. To
assess the potential costs and benefits of this testing checklist for
students, we conduct an experimental, controlled, A/B laboratory
study with 32 students (both undergraduate and graduate) who
were enrolled in software engineering courses. Students answered
survey questions and participated in a two-hour lab activity. Strati-
fied by level (undergraduate vs. graduate), students were randomly
assigned to the experimental and control groups. The experimental
group received the testing checklist and the control group received a
tutorial on a coverage tool, EclEmma (with which all students were
already familiar from their coursework). In this way, the control
group represents the state-of-the-practice. Students were instructed
to test an existing program as thoroughly as possible according to
the provided program specifications. With a combination of student-
written tests and survey responses, we explore the following two
research questions:

RQ1: Do students who see the checklist write better test code than
those who do not?
RQ2: How do students engage with the checklist?

Our results show no statistically significant differences in the
quality of tests written by students, regardless of group. This sug-
gests that our first attempt at forming a useful lightweight checklist
does as well as the state-of-the-practice, and that testing tool sup-
port does not need to be sophisticated to be effective. Therefore, a
checklist may be an effective supplement to coverage tools.

2 RELATED WORK

We focus on related work in testing education and the adoption of
checklists in software engineering research and education.

2.1 Testing Education

Software testing enables students to catch bugs early in develop-
ment [51]. Studies also report that when students write their own
tests, they write better code [35, 45]. Wick et al. [51] suggest that
unit testing helps group projects by demonstrating the correctness
of the code to group members.

To encourage students to write more thorough tests, educators
have experimented with diverse approaches to teaching testing,
such as requiring students to turn in tests along with their solu-
tions [20, 23, 27], asking students to perform closed-box testing
on a program seeded with errors [29], and instructing students
to conduct peer testing [22]. To increase interest and motivation
in software testing among students, educators also introduced
cross-course activities [6, 42], in which students in software testing
courses wrote tests for peers who are taking other CS courses.

Closest to this work is prior work that focuses on testing edu-
cation by providing inquiry-based conceptual information during
testing [15]. By contrast, we focus on the testing process. In our
checklist, we suggest the use of various testing concepts and pro-
vide tutorial information related to the use of the JUnit library. That
is, since our course curriculum explicitly exposes students to test-
ing concepts (e.g., boundary value testing), we focus on reminding
students to use techniques they have already seen.

2.2 Measurements of Test Quality in Education

Test code quality is usually evaluated by completeness using code
coverage metrics (e.g., [4, 38]), effectiveness using mutation cov-
erage (e.g., [25, 50]) and maintainability using test code smells
(e.g., [5, 48]). Requirements coverage, which is concerned with
structural coverage on software requirements, is less often used as
there is a lack of automated tools to map requirements to code [24].
In education, the quality of student-written test code is usu-
ally measured by statement coverage and branch coverage [18, 27].
However, prior studies on industry code have shown that code
coverage has no correlation with test suite effectiveness [28], and
it can be gamed by writing poor tests that execute code but lack
effective assertions [27]. To measure test suite effectiveness, some
educators [18, 46] have adopted mutation testing and all-pairs test-
ing of student tests against other students’ code to identify if a test
suite has bug-revealing capability. Assessing maintainability has
been done through test smells [8, 13], which may cause inaccurate
test results as programs evolve and impact the maintainability of
unit tests [48]. However, this usually requires manual inspection,
and hence is not commonly adopted in testing education at scale.

2.3 Checklists in Software Engineering

Prior work has demonstrated that checklists are an effective tool
for mastering various skills or performing various tasks in soft-
ware engineering, such as code review [14, 43], software inspec-
tion [11, 16, 37], and ensuring software security [3]. For example,
McMeekin et al. [37] found developers who completed a checklist-
based reading inspection were able to better understand and more
systematically modify the code than those who did not. Some stu-
dents even create their own ad-hoc checklists during testing [40].

Software engineering educators have also adopted checklists to
assist teaching and student learning [17, 39, 43]. Rong et al. [43]
found a checklist served as a necessary and helpful guideline for
inexperienced students to conduct code review. While they encour-
aged students to construct and maintain their own checklists, they
reminded students that the checklist solely did not guarantee a
high-quality code review. By contrast, Chong and colleagues [14]
investigated the mistakes in student-authored code review check-
lists to inform learning activities of code review. They also found
that developing a code review checklist stimulated students in de-
veloping their analytical skills for code reviews.

3 THE TESTING CHECKLIST

We designed our checklist to address the challenges that students
face during testing, based on prior work [8, 9, 40, 42, 44]. The
baseline assumption is that students have received some education
in software testing but need reminders on how to handle things
such as the syntax for testing exceptions. This design philosophy
makes sense in our context, where the checklist is used for upper-
level undergraduate or graduate students.

Each item in the checklist (shown in Table 1) maps to problems
students encounter during software testing (Addressing issues of...).
It contains tutorial information and testing tips in two sections, one
for individual test cases (Test Case Checklist) and one for the entire
test suite (Test Suite Checklist). Within each section, there are two
lists, one of things the test case/suite should do, representing the
most essential elements, and one that each test case/suite could do,

Table 1: The checklist used in our study. Each checklist item is inspired based on issues observed in prior work, and those
mappings are in the Addressing issues of... column.

Addressing issues of...

1. Having syntax errors [8]

2. Having no assertions [5] &
Testing happy paths only [19]

3. Having eager test [5]

4. Bad naming tests [5]
5. Unfamiliarity with test class features [5, 8]

6. Assertion Roulette [13]

7. Low requirements coverage [8]

8. Ignoring setup [8]
9. Misinterpretation of failing tests [42]

10a-d. Incomplete test sets &
Testing happy paths only [5, 8, 9]

Test Case Checklist
Each test case should:
O be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test”)
O have at least one assert statement or assert an exception is thrown. Example assert statements include:
assertTrue,assertFalse, and assertEquals (click for tutorials). For asserting an exception is thrown,
there are different approaches: try{...; fail();} catch(Exception e){assertThat...;3},
@Test(expected = exception.class) in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).
O evaluate/test only one method
Each test case could:
O be descriptively named and commented
O If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)
O If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test
evaluates one behavior.
Test Suite Checklist
The test suite should:
O have at least one test for each requirement
O appropriately use the setup and teardown code (e.g., @efore, which runs before each @Test)
O contain a fault-revealing test for each bug in the code (i.e., a test that fails)
O For each requirement, contain test cases for:
O Valid inputs O Boundary cases
To improve the test suite, you could:

O Invalid inputs O Expected exceptions

11. Low code coverage [8, 9]

O measure code coverage using an appropriate tool, such as Ecl[Emma (installation, tutorial). Inspect uncovered
code and write tests as appropriate.

representing best practices. These are intended to represent hard
and soft requirements, respectively, for quality tests.

Unlike prior work [15], the checklist does not educate students
on how to use testing techniques such as boundary value testing, but
rather serves as a reminder to consider various testing approaches,
such as invalid values, during the testing process. As the cognitive
load associated with learning a new tool contributes to students’
negative attitude towards testing [12, 33, 40, 44], the checklist is
deliberately lightweight and provides testing support without a
steep learning curve. We sought to address the following issues
that students have had during software testing:

Issue 1: Tests have syntax errors, or lack assertions [5, 8].
Solution 1: To ensure a test has fault-finding capabilities,
we remind students to ensure the test executes (item #1) and
includes at least one assert statement (item #2).

Issue 2: Tests have smells, such as Bad Naming [5, 8], No Asser-
tions [5, 8], or covering the Happy Path Only [5, 8, 9].
Solution 2: Students are encouraged to write concise tests
or split up larger ones to help avoid smells such as Eager
Tests (item #3) and Assertion Roulette (item #6). We prompt
students to use appropriate test class features to reduce re-
dundant code with items #5 and #8. We also ask students to
name the tests descriptively (item #4) to improve readability
and maintainability.

Issue 3: Stopping testing preemptively, for example, after design-

ing a test for a presumed bug in the code [9].
Solution 3: The Test Suite Checklist encourages students to
think beyond an individual test, about testing as a collection
of tests (e.g., a test for every requirement, item #7). It also
reminds students that each bug should have a fault-revealing
test (item #9).

Issue 4: Test suites insufficiently cover boundary values and other
aspects of program requirements [5, 9].

Solution 4: Items #10a-d remind students to consider test-
ing requirements with a variety of different techniques, in-
cluding equivalence class partitioning (e.g., valid and invalid

inputs) and boundary value analysis (i.e., boundary cases).
Additionally, item #11 encourages students to use code cov-
erage to identify untested code.

Issue 5: Misinterpreting failing tests, or modifying the test to re-
move the appearance of a failure [42]. Prior work [27] also
suggests that students may not realise a test failure implies a
bug, and that students “rarely saw how test failures can help
find bugs in [an] implementation”.

Solution 5: In the Test Suite Checklist, we point out that a
test that reveals the existence of bugs should fail (item #9).

4 STUDY

To assess the value of the checklist, we conducted a controlled exper-
iment with both undergraduate and graduate software engineering
students. Study materials are available on GitHub [7].

4.1 Procedure

Students were given one preliminary survey and one post-activity
survey via Qualtrics, and one Java-based unit testing project to
perform in the Eclipse IDE.

We used an experimental, controlled A/B testing study design.
After stratifying the participants based on level (undergraduate vs.
graduate), we randomly assigned students to an experimental group
(the Checklist group), in which students receive the task description
along with a unit testing checklist (Section 3), or to a control group
(the Coverage group), in which students receive the task description
along with a tutorial on EclEmma [1], a widely-used Eclipse plug-
in, which measures Java code coverage, that students had used in
previous course assignments.

This study was conducted in a two-hour lab, held synchronously
online via Zoom. To start, students received a 15-minute introduc-
tion on the procedure of the study and an overview of the unit
testing project, including the requirements and a walk-through
of example tests. Students were shown a GitHub repository con-
taining links to the surveys and the unit testing project and then
assigned to Zoom breakout rooms to work individually. Students
were allowed to consult online resources.

Table 2: Students’ self-reported experience with Java, unit
testing, and prior experience with unit tests

Group H avg_yrJava [avg_yrUT [with_expUT
Undergrad (11) 3.5 3.0 11/11
Checklist | Graduate (4) 0.1 0.4 2/4
Overall (15) 2.6 2.3 13/15
Undergrad (12) 3.8 2.7 12/12
Coverage | Graduate (5) 1.4 1.4 5/5
Overall (17) 3.1 2.3 17/17
Overall [28 23 [30/32
4.2 Tasks

4.2.1 Surveys. We adapt the preliminary and the post-activity sur-
veys from prior work [8]. The preliminary survey asks about stu-
dents’ prior unit testing experience. The post-activity survey asks
students for their experiences with the coverage tool (e.g., if and
how they used it, and how helpful they found it) or checklist (e.g.,
if and how they used it, which checklist items they found most
helpful, and what, if anything, they would change), and collects
brief demographics information (e.g., prior experience with Java
and testing).

4.2.2 Unit Testing Project. We adapted the TDD project - Bowling
Score Keeper used in multiple prior testing-related studies (e.g., [8,
21, 52]). Students were expected to create JUnit tests to verify the
behavior of an implemented program that calculates the score of
a single bowling game given 1) the program requirements, 2) the
source code with three malfunctioning methods (three classes, total
lines of code = 86), and 3) two sample tests. These three faults are
intentionally seeded into the implementation and could be revealed
by testing unhappy paths through the code. While students were
instructed to test a program implemented by others [6, 42], they
were not expected to fix the bugs or modify the source code.

4.3 Participants

We conducted this study with 32 students: 23 undergraduate and
nine graduate students. All students are enrolled in a software
engineering course at North Carolina State University. Students
were eligible to receive extra credit upon completion of the study.
Table 2 presents participants’ self-estimated experience in years
with Java (avg_yrjava, numeric) and unit testing (avg_yrUT, nu-
meric), as well as if they have prior experience with unit tests
(with_expUT, binary yes/no response). Overall, students have an av-
erage of 2.8 years of programming experience in Java, and 2.3 years
of experience in unit testing. The majority of students (all except for
two graduate students in the Checklist group) have experience with
unit tests (30/32). On average, students in the Checklist group have
slightly less experience in Java and very similar experience with
unit tests than students in the Coverage group. The undergraduate
students are more experienced than the graduate students.

4.4 Data Analysis

In total, 32 students completed 64 surveys and wrote 297 test cases
(Checklist group: 135 test cases, Coverage group: 162 test cases). To
analyze the surveys responses and the quality of student-written
test code, we adopted the same metrics as prior work [8], as de-
scribed in Sections 4.4.1 and 4.4.2. The group condition was con-
cealed during data analysis.

Table 3: ANOVA results for comparing the use of the testing
checklist and the coverage tools

Independent Variable
Dependent Variable [isGrad [isChecklist | isGrad * isChecklist
1) Requirements Cov 0.0349* 0.6919 0.4528
2) Instruction Cov 0.0149* 0.7346 0.3886
3) Branch Cov 0.0036™ | 0.7974 0.6120
4) Mutation Cov 0.6990 0.1400 0.5380
5) #Identified Bugs 0.0598 0.8591 0.7200
6) #Smelly Tests 0.2880 0.8170 0.5810

p < 0.05, p <0.01, " p <0.001

4.4.1 Survey Responses: For rating questions, we convert 5-point
Likert scale to numbers and treat them as interval-scaled data [26],
where 1 maps to the lowest score, “Not at all helpful”, and 5 maps
to the highest score, “Extremely helpful”.

4.4.2 Unit Testing Project: We measure the test code quality from
three aspects:

Completeness:
Measured using requirements coverage, instruction cover-
age and branch coverage. We manually measure the require-
ments coverage with the program specifications. The provided
example tests introduce a baseline requirements coverage of 7.7%.
We adopt EclEmma to measure the instruction coverage (base-
line = 20.3%) and branch coverage (baseline = 13.6%).

Effectiveness:
Mutation testing measures the effectiveness of a test suite by
injecting a single fault at a time (known as a mutant) and re-
running the test suite to see if it is detected (i.e., if a test fails).
The mutation coverage (baseline = 11.5%) is the percentage of
mutants caught, or killed, by the test suite. We use the muta-
tion coverage and the number of identified bugs as the two
metrics to represent test suite effectiveness. We use PITest [2]
for mutation testing, and we manually identify the number of
seeded bugs revealed by student-written tests. As the students
wrote test code and did not modify the system under test, the
set of mutants produced by PITest was the same for all students.

Maintainability:
Measured using test smells. We adopt the definitions of test
smells from prior work [8] and manually identify the smells in
student-written test code. No inter-rater reliability was consid-
ered in this process as only one author coded the smells.

4.4.3 Screen Capture. Students were instructed to screen record
their testing process, including browser activities, but technical
difficulties prevented the capture of complete videos for many stu-
dents. We were able to retain 19 videos, eight from the Checklist
group and eleven from the Coverage group.

4.4.4 Statistical Analysis. Treating the six metrics from Section 4.4
as dependent variables, we measured the impact of the following in-
dependent variables: isChecklist for comparing the coverage group
to the checklist group, and isGrad for the level in school. We used
a two-way ANOVA analysis to explore the impact of each variable
independently as well as their interaction (isGrad = isChecklist).
While this is less resilient to the non-normal tendencies in some of
our data than a Kruskal-Wallis ANOVA, it is necessary to under-
stand both factors and their interaction [34]. We report the p-values
in Table 3.

Table 4: Measurements of student-written tests quality

Metrics Group { Overall [Undergrad [Grad
[avg [med [avg [med | avg [med
. Checklist 13.4 7.0 16.0 16.0 6.3 6.5
numAssertions

Coverage 18.8 | 14.0 | 21.6 | 19.0 | 12.0 | 13.0
Checklist 744 | 769 | 77.6 | 84.6 | 654 | 615
Coverage 70.6 | 769 | 782 | 80.8 | 52.3 | 53.8
Checklist || 81.4 | 87.0 | 83.9 | 89.7 | 745 | 75.4
Coverage 79.2 | 86.2 | 850 | 88.0 | 654 | 583
Checklist || 66.1 | 66.0 | 70.5 | 70.5 | 54.0 | 54.5
Coverage || 64.0 | 659 | 708 | 694 | 47.8 | 457
Checklist 59.6 | 65.0 | 59.0 | 62.0 | 61.3 | 65.5
Coverage 50.5 | 51.0 | 523 | 52.0 | 46.2 | 40.0
Checklist || 0.7 0.0 0.8 0.0 0.3 0.0

Requirement (%)

Instruction (%)

Branch (%)

Mutation (%)

Identified Bugs | 0 se || 06 | 00 | 08 |05 | 00 | 00
Smelly Tosts | Checklist [[0.6° [00 [05 [00 | 08 | 10
Y Coverage || 07 | 00 |05 |00 |12 | 10

5 RESULTS

We compare the testing performance of students in the experimental
(Checklist) group and the control (Coverage) group (Section 5.1)
and report how students engage with the checklist (Section 5.2).

5.1 RQ1: Test Quality

Summary: Students with the checklist and code coverage tool
support performed equally well, suggesting that the tool support
does not need to be sophisticated to be effective.

Table 4 shows the quality metrics of the student-written test
code, including the completeness metrics (Requirement, Instruction,
Branch), effective metrics (Mutation, Identified Bugs), and maintain-
ability metric (Smelly Tests). For example, the average student in the
Checklist group wrote 13.4 assertions (numAssertions) and achieved
a requirements coverage of 74.4%.

We found that students overall in the Checklist group did no
worse than those in the Coverage group in terms of completeness
(i.e., requirements coverage and code coverage). Though 60% of
students (9/15) in the Checklist group also used Ecl[Emma during
unit testing, using a coverage tool is not a mandatory item in the
checklist. It is noteworthy that students in the Coverage group were
encouraged to achieve 80% instruction coverage on every non-test
class! while no such threshold was mentioned for students in the
Checklist group. Given the small number of participants, we did
not expect to find significant differences in test quality between the
Checklist and the Coverage groups [49], and our ANOVA analysis
confirms this (Table 3).

The biggest difference between the Checklist group and the
Coverage group can be seen in the mutation coverage (median
65.0% vs. 51.0%, in Table 4). While the difference is not statistically
significant (p = 0.14), the effect size was medium (Cohen’s d = 0.55),
indicating that the Checklist group did moderately better. However,
using the testing checklist had no statistically significant impact
on the number of identified bugs (p = 0.86).

Moreover, we observed no statistically significant difference
(p = 0.82) in the number of smelly tests among the student-written
tests from the Checklist and the Coverage groups.

Finally, none of the interaction results were statistically signif-
icant, indicating that the checklist did not impact graduate and
undergraduate students differently.

!Consistent with the requirements in our undergraduate software engineering courses.

5.2 RQ2: Engagement with Checklist

Summary: Most students self-reported that they read the check-
list before they wrote any unit tests (13/15). On average, they
also found it “very helpful” (3.9 on a 5-point Likert scale).

Most students in the Checklist group reported that they read the
checklist before they wrote any unit tests (13/15), and approximately
half consulted the checklist during unit testing (7/15). They found
it to be very helpful, rating it an average of 3.9 on a 5-point Likert
scale. All students who used the checklist agreed that checklist
item #2, “Each test case should have at least one assert statement
or asserts an exception is thrown” was the most helpful item. They
also considered the following checklist items to be helpful: item #1
(11/15), #10a (11/15), item #10b (10/15) and item #4 (10/15).

To add nuance to our understanding of checklist engagement,
we also watched the eight screen capture videos of the Checklist
group. To illustrate mechanisms by which the checklist might have
been helpful, we present two students who demonstrated successful
use of the checklist and one student who struggled with it.

Student One used the testing checklists as a guide and consulted
the provided tutorial information:

Student One tried to assert an exception is thrown, but was encoun-
tering syntax errors. They opened the checklist and followed the link
in the second checklist item to the relevant tutorial. After 4 minutes,
they successfully constructed a test case that asserts an exception is
thrown. This student voted item#2 as the most helpful, and found the
checklist “extremely helpful”.

The test code written by Student One achieved requirements
coverage of 100.0%, instruction coverage of 92.2%, branch coverage
of 86.4%, and a mutation coverage of 68.0%. However, Student One
did not reveal any bugs.

The second student adopted the testing checklists as an inspira-
tion of what and how to test:

Student Two placed the checklist side by side with Eclipse. They tried
to write a test that asserts an exception is thrown, but was encountering
syntax errors. Instead of using the tutorial link, this student copied
keywords from the checklist and pasted them into a search engine,
and then consulted StackOverflow where they found sample tests. The
student successfully implemented the desired test within three minutes
of using the checklist. This student agreed that item#2 is one of the
most helpful and found the checklist “very helpful” overall.

This student successfully revealed two of three seeded faults
in the source code, along with a mutation coverage of 82.0%; they
covered 84.6% of the requirements, achieved instruction coverage
of 94.0%, and branch coverage of 86.4%. All these scores are above
the average and median values for the group.

However, we also observed cases where students still struggled
to test their code effectively, even with the checklist’s guidance:

Student Three self-reflected in the post-activity survey that, “I had a
hard time understand[ing] how to test some methods, therefore, I could
not spare time to explicitly follow the checklist. However, I was able to
follow the checklist somewhat vaguely. The checklist itself was fine, I
would not recommend any changes.”

Student Three had a more average performance: they achieved
requirements coverage of 76.9%, instruction coverage of 91.8%, and
branch coverage of 63.6%. The tests written by this student revealed
no bugs along with a mutation coverage of 60.0%.

While the checklist seemed to benefit Students One and Two,
Student Three may have performed better with more guidance on
the testing techniques [15]. This echoes the finding that not all
students need the same level of tool support [30].

6 DISCUSSION

Based on our experiment, we find that our first attempt at a testing
checklist does as well as, and possibly better than, a coverage tool
alone. This is important because students may be hesitant to adopt
new tools or struggle to use them effectively. Checklists are flexible
and adoptable with a minimal learning barrier.

As this was the first investigation into the value of a testing
checklist with a small sample size, it warrants further refinement
and investigation into how and why it works. Here, we discuss
the potential positive impact of adopting the testing checklist on
student-written test code, as well as potential threats to validity.

6.1 Positive Impact

While analyzing the student-written test code, we found that the
students in the Checklist group achieved higher mutation coverage
despite writing fewer assert statements (median number of assert
statements were 7.0 vs. 14.0, in Table 4). Though the differences
were not statistically significant (p = 0.21), we dug into the imple-
mentation details and found a potential explanation: even though
the achieved requirements coverage was relatively the same for
both groups, there were differences in the individual requirements
that were being tested. Students in the Checklist group covered
more of the complicated requirements, such as calculating bonus
points for strikes and spares, with logic that is mathematical and
prone to mutants. This may also suggest that using a checklist
allows students to focus more on boundary values (checklist item
#10b) than simply covering the requirements or lines of code.

Additionally, we observed that the adoption of lightweight tool
support, like a checklist, might be more helpful for students with
lower prior knowledge in Java and unit testing. The four graduate
students in the Checklist group had minimal experience in Java (avg:
0.1 yrs) and unit testing (avg: 0.4 yrs), but they produced higher
mutation coverage than more-experienced graduate students in the
Coverage group (median 65.5% vs. 40.0%). Due to the small sample
size, this finding may not generalize.

6.2 Future Work

For future work, a replication study with a more diverse and larger
set of computing students is suggested to further investigate and
better generalize the impact of the checklist.

Students in our study were largely unsuccessful at discovering
the seeded faults (median 0.0 for both groups). This may be due
to the complexity of the task requirements. Future studies should
include simpler tasks and more complex ones to better understand
the contexts in which a testing checklist would be most useful.

Additionally, there are many potential improvements that can be
made to the checklist. We plan to use the feedback from students as
part of RQ2 to further refine the checklist items so to maximize their

value. For example, students found it difficult to navigate the code,
program requirements, and checklist, which were all in separate
places. A future checklist can integrate the requirements directly
into the checklist to reduce context switching. Another potential
improvement is to make the checklist interactive by allowing stu-
dents to check off items and visualize their progress. Integrating
coverage tools, such as EclEmma and PITest, into the checklist is
also suggested as it can reduce context switching.

6.3 Threats to Validity

Conclusion: The two-way ANOVA analysis we used assumes the
data are normally distributed. Not all of the data was normally
distributed, so this may impact some conclusions drawn.

The lab sessions were conducted synchronously and remotely.
To alleviate the concern about potential academic misconduct, and
to ensure students followed study procedures, we required students
to record their screen activities while working on the unit testing
project, and submit the videos along with their test code upon
completion of the study. However, since they know they are being
observed, this may impact how they test.

Construct: Students worked individually and remotely, which
could potentially impact their behavior. Metrics, such as time, may
not be consistent across students due to a lack of control in the
study environment. This influence was reduced by asking students
to record their screen activities.

Internal: We only observed students’ interactions with an unfa-
miliar codebase. Students may perform differently on programs
implemented by themselves or their peers due to the familiarity.

Response bias may be introduced in the student self-reported

surveys, and hence impact the validity of surveys. Students’ inter-
pretation of survey questions and options may vary and potentially
be imprecise, which could bias the results as well.
External: Sampling bias could be introduced in participant recruit-
ment as students were self-selected into this study. The students
in the study were relatively advanced students studying software
engineering. These results may not generalize to other students or
those with less testing experience.

7 CONCLUSION

The application of checklists to software testing is novel and prelim-
inary evidence suggests it is promising for improving the quality of
student-written tests. In this study, we implemented and assessed a
lightweight testing checklist. Our results showed no statistically
significant differences between the Checklist group and Coverage
group on any of the metrics studied, suggesting a lightweight check-
list can help students as well as specific coverage tools. We observed
that most students used the checklist as a guide—they read through
the checklist before they wrote any unit tests, and they occasionally
consulted the checklist during unit testing. The checklist appeared
to help students write better tests, as their tests achieved relatively
the same code coverage and higher mutation coverage than those
who only used the coverage tool. We also conjecture that students
who have lower prior knowledge in Java and unit testing showed
benefit more from the checklist.

8 ACKNOWLEDGEMENTS
This work is supported in part by NSF SHF #1749936 and #1714699.

REFERENCES

(1]

[10]

(11

[12]

[13

[14]

[15]

=
&

[17

[18

[19]

[20

[
=

[22]

[23

[24]

[25

[26

[27

[n.d.]. EclEmma: Coverage Counters. https://www.eclemma.org/jacoco/trunk/
doc/counters.html. Accessed: 2022-01-23.

[n.d.]. PITest: Mutation Operators. http://pitest.org/quickstart/mutators/. Ac-
cessed: 2022-01-23.

Mahtab Alam. 2010. Software security requirements checklist. International
Journal of Software Engineering, ISE 3, 1 (2010), 53-62.

Tiago L. Alves and Joost Visser. 2009. Static Estimation of Test Coverage. In
International Working Conf. on Source Code Analysis and Manipulation. 55-64.
Mauricio Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In ACM Technical Symposium on Computer Science
Education (SIGCSE ’19). 414-420.

Andrea Arcuri. 2020. Teaching Software Testing in an Algorithms and Data
Structures Course. In Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 419-424.

Gina R. Bai. 2022. ginaBai/TestingChecklistStudy: TestingChecklistStudyMaterials.
https://doi.org/10.5281/zenodo.6466776

Gina R. Bai, Justin Smith, and Kathryn T. Stolee. 2021. How Students Unit
Test: Perceptions, Practices, and Pitfalls. In ITiCSE 2021: 26th ACM Conference on
Innovation and Technology in Computer Science Education. ACM, 248-254.

Lex Bijlsma, Niels Doorn, Harrie Passier, Harold Pootjes, and Sylvia Stuurman.
2021. How do Students Test Software Units?. In Int’l Conf. on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). 189-198.

Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based
Testing of Assignments. In Technical Symposium on CS Education. 488-493.

Bill Brykczynski. 1999. A Survey of Software Inspection Checklists. SIGSOFT
Softw. Eng. Notes 24, 1 (Jan. 1999), 82.

Ingrid A. Buckley and Winston S. Buckley. 2017. Teaching Software Testing
using Data Structures. International Journal of Advanced Computer Science and
Applications 8, 4 (2017).

Kevin Buffardi and Juan Aguirre-Ayala. 2021. Unit Test Smells and Accuracy
of Software Engineering Student Test Suites. In Conference on Innovation and
Technology in Computer Science Education. 7.

Chun Yong Chong, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn.
2021. Assessing the Students’ Understanding and their Mistakes in Code Review
Checklists: An Experience Report of 1,791 Code Review Checklist Questions
from 394 Students. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). 20-29.
Lucas Cordova, Jeffrey Carver, Noah Gershmel, and Gursimran Walia. 2021. A
Comparison of Inquiry-Based Conceptual Feedback vs. Traditional Detailed Feed-
back Mechanisms in Software Testing Education: An Empirical Investigation. 87-93.
Bruno Pedraca de Souza, Rebeca Campos Motta, and Guilherme Horta Travassos.
2019. The First Version of SCENARIotCHECK: A Checklist for IoT Based Sce-
narios. In Brazilian Symposium on Software Engineering (Salvador, Brazil) (SBES
2019). Association for Computing Machinery, 219-223.

Simone C. dos Santos, Maria da Concei¢cdo Moraes Batista, Ana Paula C. Cav-
alcanti, Jones O. Albuquerque, and Silvio R.L. Meira. 2009. Applying PBL in
Software Engineering Education. In 2009 22nd Conference on Software Engineer-
ing Education and Training. 182-189.

Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures
for Assessing Student-Written Tests. In 36th International Conference on Software
Engineering (ICSE Companion 2014). 354-363.

Stephen H. Edwards and Zalia Shams. 2014. Do Student Programmers All Tend
to Write the Same Software Tests?. In Conference on Innovation and Technology
in Computer Science Education (ITiCSE °14). 171-176.

Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests Against Each Others’ Code: New Life
for an Old "Gimmick". In Technical Symposium on CS Education. 221-226.
Davide Fucci and Burak Turhan. 2013. A Replicated Experiment on the Effective-
ness of Test-First Development. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. 103-112.

Alessio Gaspar, Sarah Langevin, Naomi Boyer, and Ralph Tindell. 2013. A Prelim-
inary Review of Undergraduate Programming Students’ Perspectives on Writing
Tests, Working with Others, & Using Peer Testing. In ACM SIGITE Conference on
Information Technology Education. 109-114.

Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Technical Symposium on CS Education. 271-275.

Orlena CZ Gotel and CW Finkelstein. 1994. An analysis of the requirements
traceability problem. In Int’l Conf. on Requirements Engineering. 94-101.
Giovanni Grano, Fabio Palomba, and Harald C. Gall. 2019. Lightweight Assess-
ment of Test-Case Effectiveness using Source-Code-Quality Indicators. IEEE
Transactions on Software Engineering (2019), 1-1.

Spencer E. Harpe. 2015. How to analyze Likert and other rating scale data.
Currents in Pharmacy Teaching and Learning 7, 6 (2015), 836-850.

Sarah Heckman, Jessica Young Schmidt, and Jason King. 2020. Integrating Testing
Throughout the CS Curriculum. In Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 441-444.

(28]

[29

[30

®
=

[32

[33

(34

[35

[37

[38

(39]

[40

N
=

[42

[43

(44

[45

[46

[47

[48

[49

o
=

[51

[52

Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In 36th Intl. Conf. on Software Eng. (ICSE 2014).
435-445.

Ursula Jackson, Bill Z. Manaris, and Renée A. McCauley. 1997. Strategies for
Effective Integration of Software Engineering Concepts and Techniques into
the Undergraduate Computer Science Curriculum. In Technical Symposium on
Computer Science Education (SIGCSE *97). 360-364.

Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and Sarah Heckman.
2015. Bespoke Tools: Adapted to the Concepts Developers Know. In Foundations
of Software Engineering (ESEC/FSE 2015). 878-881.

Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emer-
son Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A Cross-Tool
Communication Study on Program Analysis Tool Notifications. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 73-84.
Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). 672-681.
Edward L. Jones. 2001. Integrating Testing into the Curriculum — Arsenic in
Small Doses. SIGCSE Bull. 33, 1 (Feb. 2001), 337-341.

William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583-621.

Otavio Augusto Lazzarini Lemos, Fabio Fagundes Silveira, Fabiano Cutigi Ferrari,
and Alessandro Garcia. 2018. The impact of Software Testing education on code
reliability: An empirical assessment. 7. of Sys. and Software 137 (2018), 497-511.
Samiha Marwan, Yang Shi, lan Menezes, Min Chi, Tiffany Barnes, and Thomas W
Price. 2021. Just a Few Expert Constraints Can Help : Humanizing Data-Driven
Subgoal Detection for Novice Programming. In International Conference on Edu-
cational Data Mining. 1-13.

David A. McMeekin, Brian R. von Konsky, Elizabeth Chang, and David J.A. Cooper.
2008. Checklist Based Reading’s Influence on a Developer’s Understanding. In
19th Australian Conference on Software Engineering (aswec 2008). 489-496.

Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic Test Case Generation: What if Test Code Quality
Matters?. In International Symposium on Software Testing and Analysis. 130-141.
Kai Petersen and Jefferson Seide Molléri. 2021. Preliminary Evaluation of a Survey
Checklist in the Context of Evidence-based Software Engineering Education. In
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, Raian Ali, Hermann Kaindl, and Leszek A. Maciaszek (Eds.). 437-444.
Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider.
2014. Enablers, Inhibitors, and Perceptions of Testing in Novice Software Teams.
In International Symposium on Foundations of Software Engineering. 30-40.
Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In Foundations of Software Engineering
(FSE ’12). Article 33, 11 pages.

Upsorn Praphamontripong, Mark Floryan, and Ryan Ritzo. 2020. A Preliminary
Report on Hands-On and Cross-Course Activities in a College Software Testing
Course. In Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 445-451.

Guoping Rong, Jingyi Li, Mingjuan Xie, and Tao Zheng. 2012. The Effect of
Checklist in Code Review for Inexperienced Students: An Empirical Study. In
Conference on Software Engineering Education and Training. 120-124.

Lilian Passos Scatalon, Jeffrey C. Carver, Rogério Eduardo Garcia, and
Ellen Francine Barbosa. 2019. Software Testing in Introductory Programming
Courses: A Systematic Mapping Study. In Technical Symposium on Computer
Science Education (SIGCSE ’19). 421-427.

Lilian P. Scatalon, Jorge M. Prates, Draylson M. de Souza, Ellen F. Barbosa, and
Rogério E. Garcia. 2017. Towards the Role of Test Design in Programming
Assignments. In 2017 IEEE 30th Conference on Software Engineering Education
and Training (CSEE&T). 170-179.

Zalia Shams and Stephen H. Edwards. 2013. Toward Practical Mutation Analysis
for Evaluating the Quality of Student-Written Software Tests. In ACM Conference
on International Computing Education Research (ICER ’13). 53-58.

Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-driven
Development (TDD). In Symposium on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). 907-913.

Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink,
and Alberto Bacchelli. 2020. Investigating Severity Thresholds for Test Smells. In
Mining Software Repositories (MSR "20). 311-321.

Matthew S. Thiese, Brenden Ronna, and Ulrike Ott. 2016. P value interpretations
and considerations. Journal of Thoracic Disease 8, 9 (2016).

Jeffrey Voas. 1997. How assertions can increase test effectiveness. IEEE Software
14, 2 (Mar 1997), 118-119.

Wick, Michael and Stevenson, Daniel and Wagner, Paul. 2005. Using Testing and
JUnit Across the Curriculum. In 36th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE 05). 236—-240.

Laurie Williams, E. Michael Maximilien, and Mladen Vouk. 2003. Test-driven
development as a defect-reduction practice. In 14th International Symposium on
Software Reliability Engineering, 2003. ISSRE 2003. 34-45.

https://www.eclemma.org/jacoco/trunk/doc/counters.html
https://www.eclemma.org/jacoco/trunk/doc/counters.html
http://pitest.org/quickstart/mutators/
https://doi.org/10.5281/zenodo.6466776

	Abstract
	1 Introduction
	2 Related Work
	2.1 Testing Education
	2.2 Measurements of Test Quality in Education
	2.3 Checklists in Software Engineering

	3 The Testing Checklist
	4 Study
	4.1 Procedure
	4.2 Tasks
	4.3 Participants
	4.4 Data Analysis

	5 Results
	5.1 RQ1: Test Quality
	5.2 RQ2: Engagement with Checklist

	6 Discussion
	6.1 Positive Impact
	6.2 Future Work
	6.3 Threats to Validity

	7 Conclusion
	8 Acknowledgements
	References

